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Preface

Finite model theory, as understood here, is an area of mathematical logic that
has developed in close connection with applications to computer science, in
particular the theory of computational complexity and database theory. One
of the fundamental insights of mathematical logic is that our understanding
of mathematical phenomena is enriched by elevating the languages we use to
describe mathematical structures to objects of explicit study. If mathematics
is the science of patterns, then the media through which we discern patterns,
as well as the structures in which we discern them, command our attention. It
is this aspect of logic which is most prominent in model theory, “the branch of
mathematical logic which deals with the relation between a formal language
and its interpretations”. No wonder, then, that mathematical logic, and finite
model theory in particular, should find manifold applications in computer
science: from specifying programs to querying databases, computer science
is rife with phenomena whose understanding requires close attention to the
interaction between language and structure.

This volume gives a broad overview of some central themes of finite model
theory: expressive power, descriptive complexity, and zero–one laws, together
with selected applications to database theory and artificial intelligence, espe-
cially constraint databases and constraint satisfaction problems. The final
chapter provides a concise modern introduction to modal logic, which empha-
sizes the continuity in spirit and technique with finite model theory. Chapters
2–7 are extensively revised and updated versions of tutorials presented at the
University of Pennsylvania on April 12–15, 1999, under the sponsorship of
Penn’s Institute for Research in Cognitive Science (IRCS) and the Center
for Discrete Mathematics and Theoretical Computer Science (DIMACS) at
Rutgers University. We would like to express our gratitude to DIMACS and
IRCS for their support, which made these tutorials possible. The tutorials
were presented to a diverse audience of computer scientists, linguists, logi-
cians, mathematicians, and philosophers, and the chapters of the book retain
the broad accessibility and wide appeal of the tutorials. The introductory
chapter highlights common themes among the tutorials that follow.



VI Preface

This volume is not meant to be a textbook on finite model theory. There
are three such texts currently available. Finite Model Theory, by Ebbinghaus
and Flum, and Elements of Finite Model Theory, by Libkin, provide general
coverage of the field, while Descriptive Complexity, by Immerman, focuses
on the connection between finite model theory and computational-complexity
theory. Rather, this volume aims at highlighting applications of finite model
theory, emphasizing “the unusual effectiveness of logic in computer science”.

December 18, 2006 Moshe Y. Vardi
Scott Weinstein
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1

Unifying Themes in Finite Model Theory

Scott Weinstein

One of the fundamental insights of mathematical logic is that our understand-
ing of mathematical phenomena is enriched by elevating the languages we use
to describe mathematical structures to objects of explicit study. If mathe-
matics is the science of pattern, then the media through which we discern
patterns, as well as the structures in which we discern them, command our
attention. It is this aspect of logic which is most prominent in model theory,
“the branch of mathematical logic which deals with the relation between a
formal language and its interpretations” [21]. No wonder, then, that mathe-
matical logic, in general, and finite model theory, the specialization of model
theory to finite structures, in particular, should find manifold applications in
computer science: from specifying programs to querying databases, computer
science is rife with phenomena whose understanding requires close attention
to the interaction between language and structure.

As with most branches of mathematics, the growth of mathematical logic
may be seen as fueled by its applications. The very birth of set theory was
occasioned by Cantor’s investigations in real analysis, on subjects themselves
motivated by developments in nineteenth-century physics; and the study of
subsets of the real line has remained the source of some of the deepest results
of contemporary set theory. At the same time, model theory has matured
through the development of ever deeper applications to algebra. The interplay
between language and structure, characteristic of logic, may be discerned in all
these developments. From the focus on definability hierarchies in descriptive
set theory, to the classification of structures up to elementary equivalence
in classical model theory, logic seeks order in the universe of mathematics
through the medium of formal languages.

As noted, finite model theory too has grown with its applications, in this
instance not to analysis or algebra, but to combinatorics and computer sci-
ence. Beginning with connections to automata theory, finite model theory has
developed through a broader and broader range of applications to problems
in graph theory, complexity theory, database theory, computer-aided verifica-
tion, and artificial intelligence. And though its applications have demanded
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the development of new techniques, which have given the subject a distinc-
tive character as compared to classical model theory, the fundamental focus
on organizing and understanding phenomena through attention to the rela-
tion between language and structure remains prominent. Indeed, the detailed
investigation of definability hierarchies and classifications of finite structures
up to equivalence relations coarser than elementary equivalence, which are
defined in terms of a wide variety of fragments of first-order, second-order,
fixed-point, and infinitary logics, is a hallmark of finite model theory. The
remaining sections of this chapter will highlight common themes among the
chapters to follow.

1.1 Definability Theory

The volume begins with a chapter by Phokion Kolaitis, “On the expressive
power of logics on finite models”, which surveys major topics in the theory
of definability in the context of finite structures. “The theory of definability
is the branch of logic which studies the complexity of concepts by looking
at the grammatical complexity of their definitions.” [3]. This characterization
indicates that the theory of definability has two main aspects:

• to establish a classification of concepts in terms of definitional complexity
• to establish that such classification is in some way informative about the

intrinsic or intuitive “complexity” of the concepts thus classified.

Chapter 2 provides an extended treatment of both these aspects of definability
theory, which reappear throughout the volume as important themes in finite
model theory and its applications.

1.1.1 Classification of Concepts in Terms of Definitional
Complexity

In the context of finite model theory, the “concepts” with which we are con-
cerned are queries on classes of finite relational structures. Chapter 2 pro-
vides precise definitions of these notions; for the purposes of introduction, let
us focus on Boolean queries on a particular set of finite undirected graphs
as follows. Let Gn be the collection of undirected graphs with vertex set
[n] (= {1, . . . , n}), and let G =

⋃
n Gn. Thus, each G ∈ G has a vertex

set V G = [n], for some n, and an irreflexive and symmetric edge relation
EG ⊆ [n]× [n]. A Boolean query Q on G is just an isomorphism-closed subset
of G, that is, Q ⊆ G is a Boolean query if and only if, for all G,H ∈ G,

G ∼= H =⇒ (G ∈ Q⇔ H ∈ Q).

Logical languages provide a natural means for classifying Boolean queries.
A logical language L consists of a set of L-sentences, SL, and an L-satisfaction
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relation |=L. In the current setting, we may understand |=L as a relation
between graphs G ∈ G and sentences ϕ ∈ SL: G |=L ϕ, if and only if G
satisfies the condition expressed by ϕ. A fundamental notion is the Boolean
query, ϕ[G], defined by an L-sentence, ϕ:

ϕ[G] = {G ∈ G | G |=L ϕ}.

A Boolean query Q on G is L-definable if and only if there is an L-sentence ϕ
with Q = ϕ[G].

Let us look at some examples. Consider the following Boolean queries:

Sizen the set of graphs of size n;
Diamn the set of graphs of diameter ≤ n;
Colork the set of k-colorable graphs;
Conn the set of connected graphs;
CardX the set of graphs of size n for some n ∈ X ⊆ N.

The first two queries are defined by first-order sentences σn and δn, respec-
tively, for each n; for example, the query Size2 is defined by the first-order
sentence σ2,

∃x∃y(x �= y) ∧ ¬∃x∃y∃z(x �= y ∧ x �= z ∧ y �= z),

and the query Diam2 is defined by the first-order sentence δ2,

∀x∀y(x = y ∨ Exy ∨ ∃z(Exz ∧ Ezy)).

For each k, the third query is defined by a sentence χk of existential monadic
second-order logic, that is, the fragment of second-order logic consisting of
sentences all of whose second-order quantifiers are existential, bind monadic
predicate symbols, and do not occur within the scope of any first-order quan-
tifier or truth-functional connective; for example, Color2 is defined by the
sentence χ2,

∃Z∀x∀y(Exy → (Zx↔ ¬Zy)).

The next query is defined by a sentence γ of Lω1ω , the infinitary logic obtained
by adding the operations of countable conjunction and countable disjunction
to first-order logic, as follows: ∨

n∈N

δn.

Note that in general, γ expresses the condition that a graph has bounded
diameter – over G, this condition coincides with connectedness. Finally, for
each X ⊂ N, the query CardX is defined by a sentence κX of Lω1ω as follows:

∨

n∈X
σn.

Now, broadly speaking, definability theory provides techniques for deter-
mining whether or not given queries, or collections of queries, are definable in
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a specified logic L, and attempts to extract useful information about queries
from the fact that they are L-definable. For example, Chap. 2 develops tools to
show that neither Colork nor Conn is first-order definable, and thus stronger
logics are needed to express such basic combinatorial properties.

1.1.2 What More Do We Know When We Know a Concept Is
L-Definable?

This, of course, depends on L. One striking feature of finite model theory has
been that it has drawn attention to the fact that a great deal of interesting
information about Boolean queries can be extracted from the fact that they
are definable in familiar logical languages, and, perhaps even more striking,
it has highlighted the importance of some natural, though hitherto neglected,
fragments of well-studied languages, such as the finite variable fragments of
first-order logic and infinitary logic discussed below.

Before we proceed to explore this aspect of definability theory in the con-
text of finite model theory, let us reflect for a moment on a paradigmatic
example of extracting information from the fact that a set is definable in
a certain way: the celebrated result of Cantor concerning the cardinality of
closed sets of real numbers. Recall that a closed set can be defined as the com-
plement of a countable union of open intervals with rational endpoints (which
implies, in modern parlance, that a closed set is Π0

1). Note that we may
infer from this definability characterization that there are only 2ℵ0 closed sets
of reals, while there are 2(2ℵ0) sets of reals altogether. Cantor showed that
closed sets satisfy a very strong dichotomy with respect to their cardinali-
ties: every infinite closed set is either countable or of cardinality 2ℵ0 , that is,
there is no closed set witnessing a cardinality strictly between ℵ0 and 2ℵ0 . On
the basis of his success with closed sets, Cantor was motivated to formulate
the Continuum Hypothesis (CH): the conjecture that all infinite sets of reals
satisfy this strong cardinality dichotomy. In 1963, Cohen established that if
Zermelo–Fraenkel set theory with the Axiom of Choice (ZFC) is consistent,
then it is consistent with the statement that there is an infinite set of reals
whose cardinality is neither ℵ0 nor 2ℵ0 , that is, ZFC+¬CH is consistent rela-
tive to ZFC. Thus, Cantor’s result shows how it is possible to gain significant
structural information about a concept from the knowledge that it admits a
“simple” enough definition. In what Moshovakis describes as “one of the first
important results of descriptive set theory” [52], Suslin generalized Cantor’s
solution of the continuum problem from closed sets to analytic sets, that is,
projections of closed sets (Σ1

1 sets). Indeed, he showed that every uncountable
analytic set contains a nonempty perfect set, as Cantor had established for
closed sets. Further generalization of this property to sets whose definitional
complexity is greater, even to co-analytic sets, is not possible on the basis
of ZFC.

Finite model theory provides a rich collection of phenomena which illus-
trate this paradigm of wresting structural information about concepts from



1.1 Definability Theory 5

definability conditions. Let us begin with an example from asymptotic com-
binatorics which touches on topics dealt with in detail in Chaps. 2 and 4. Let
Q be a Boolean query on G. Recall that card(Gn) = 2(n2). The density μn of
Q at Gn is defined as follows:

μn(Q) = card(Q ∩ Gn) · 2−(n2).

The limit density μ(Q) = limn−→∞ μn(Q) may or may not exist, depending
on the query Q. For example, if X ⊆ N is finite or cofinite, then μ(CardX)
is 0 or 1, respectively, whereas μ(CardX) is undefined if X is infinite and
coinfinite. Thus, definability in Lω1ω does not guarantee that a query has a
limit density. Indeed, for every graph G ∈ G, the query

IsomG the set of graphs isomorphic to G

is definable by a single first-order sentence ιG; for example, the graph G with
V G = {1, 2} and EG = {〈1, 2〉, 〈2, 1〉} is defined, up to isomorphism, by the
first-order sentence

κ2 ∧ ∀x∀y(Exy ↔ x �= y).

It follows that for each query Q, the Lω1ω sentence
∨

G∈Q
ιG

defines Q. Thus, no information flows from the fact that a query is Lω1ω-
definable, in particular, no information about the limit density of Conn is
forthcoming from its definability in Lω1ω. (Note that the expressive power of
Lω1ω is limited on the collection of all finite and infinite structures; indeed,
from cardinality considerations, there is an ordinal α such that the isomor-
phism type of 〈α,<〉 cannot be characterized by a sentence of Lω1ω.) Perhaps
we can find another source for such information.

Let us consider the query Diam2. How can we compute its density at
Gn? It will be useful to think of this in probabilistic terms. The density of a
query Q at Gn is just the probability of the event Q∩ Gn with respect to the
uniform measure on Gn, that is, the measure u with u({G}) = 2−(n2), for each
G ∈ Gn. The measure u may be thought of as follows: for each pair of vertices
1 ≤ i < j ≤ n, we flip a fair coin to determine whether or not there is an edge
between i and j. This point of view facilitates the computation of a useful
approximation to the density of Diam2. For a fixed pair of distinct vertices i
and j, the probability that a distinct vertex k is a neighbor of both i and j is
1/4.Therefore, the probability that none of the n− 2 vertices distinct from i
and j is a neighbor of them both is (3/4)(n−2). It is now easy to see that the
probability that some pair of vertices lacks a common neighbor is bounded by(
n
2

)
· (3/4)(n−2). It follows at once that

μn(Diam2) ≥ 1−
(
n

2

)

·
(

3
4

)(n−2)

.
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But,

lim
n→∞

(
n

2

)

·
(

3
4

)(n−2)

= 0.

Therefore, μ(Diam2) = 1. Note that Diam2 ⊆ Conn (cast logically, δ2 implies
γ), and thus, μ(Conn) = 1. We shall see that this is no isolated phenomenon,
but rather one instance of a beautiful dichotomy revealed by definability the-
ory.

As observed above, there are continuum-many queries whose limit den-
sity is undefined; moreover, it is not hard to see that for every real number
r ∈ [0, 1], there is a query with limit density r. A noteworthy dichotomy
is enshrined in the following definition. A logic L satisfies the 0–1 law with
respect to the uniform measure on G if and only if, for all L-definable queries
Q,

μ(Q) = 0 or μ(Q) = 1.

A 0–1 law codifies important structural information about L-definable queries
and provides a useful tool for establishing that specific queries are not L-
definable; for example, none of the queries CardX , for X infinite and coinfinite,
is L-definable if L satisfies the 0–1 law. It is remarkable that some natural
logics satisfy the 0–1 law. The first such result is due to Glebskii et al. [28] and,
independently, to Fagin [26], who established that first-order logic satisfies the
0–1 law with respect to the uniform measure. A brief look at an argument for
this result will be instructive.

The query Diam2 is an extension property – it requires that every pair
of vertices share a common neighbor. A generalization of this is the (m,n)-
extension property: this requires that for every pair of disjoint sets of vertices
{x1, . . . , xm} and {y1, . . . , yn}, there is a vertex z which is a neighbor of all
the xi and none of the yj . It is easy to see that this condition is expressible
by a first-order sentence ηm,n (with m+n+ 1 variables), and that, just as the
limit density of Diam2 is 1, so too μ(ηm,n[G]) = 1, for all m,n with m+n > 0.
Let ηk be the conjunction ηm,n with k = m + n + 1. Each ηk is a first-order
sentence with k variables expressing a query with limit density 1; moreover,
for all l ≤ k, ηk implies ηl. Therefore, by the Compactness Theorem for first-
order logic, the set of sentences Γ = {ηk | k > 1} is consistent. To complete
the argument, it suffices to show that for every first-order sentence ϕ, there
is a k such that ηk implies ϕ, or ηk implies ¬ϕ; indeed, if ηk implies ϕ, then
μ(ϕ[G]) = 1, and if ηk implies ¬ϕ, then μ(ϕ[G]) = 0. Now, Γ has no finite
models, and is ℵ0-categorical, that is, any two countable models of Γ are
isomorphic (the back-and-forth argument, used by Cantor to prove that the
rational numbers are, up to isomorphism, the unique countable dense linear
order without endpoints, may be deployed here; compare Chap. 4). It follows
at once, via the Löwenheim–Skolem Theorem, that Γ axiomatizes a complete
first-order theory. From this, another application of the Compactness Theorem
for first-order logic yields the conclusion that for every first-order sentence ϕ,
there is a k such that ηk implies ϕ, or ηk implies ¬ϕ. Can we say, for a
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given first-order sentence ϕ, how large a k is required? Kolaitis and Vardi [48]
showed that the answer to this question leads to a significant extension of the
0–1 law to a rich fragment of infinitary logic.

1.1.3 Logics with Finitely Many Variables

For each k ≥ 1, FOk is the fragment of first-order logic consisting of exactly
those formulas all of whose variables, both free and bound, are among
x1, . . . , xk. To understand the effect of this restriction, it is useful to observe
that variables may be reused within such sentences, so that, for example, the
queries Diamk are all FO3-definable. Here is a sentence of FO3 that defines
Diam3:

∀x1∀x2( x1 = x2 ∨ Ex1x2∨
∃x3(Ex1x3 ∧ Ex3x2)∨
∃x3(Ex1x3 ∧ ∃x1(Ex3x1 ∧Ex1x2))).

We have already noted that the logic Lω1ω is too powerful to be of interest
in the context of finite model theory, since every query is definable in this logic.
The logic Lkω1ω is the fragment of Lω1ω consisting of exactly those formulas
all of whose variables, both free and bound, are among x1, . . . , xk; Lωω1ω =
⋃
k L

k
ω1ω. In light of the FO3-definability of Diamk, observe that Conn is

L3
ω1ω−definable. Indeed, as discussed in Chap. 2, all queries definable in the

fixed-point logics LFP, IFP, and PFP, which provide means for definition of
relations by recursion, for example the transitive closure of the edge relation,
are Lωω1ω-definable (note that, in general, these inclusions fail on collections
of finite and infinite structures; for example, the notion of well-foundedness is
LFP-definable on the class of all directed graphs, but is not even definable in
the powerful infinitary logic L∞ω discussed below).

Kolaitis and Vardi established that the 0–1 law holds for Lωω1ω with respect
to the uniform measures on Gn. In particular, they showed that for every
k > 1, ηk axiomatizes a complete Lkω1ω theory. Thus, even though Lωω1ω

has expressive power sufficient to encompass various forms of recursion, it
retains some of the structural simplicity of first-order logic; indeed, every
Lωω1ω-definable query or its complement is implied by a first-order definable
query of limit density 1 (the analogy with Suslin’s generalization of the the-
orem of Cantor mentioned above is irresistible). This result gave a coherent
explanation for earlier work on 0–1 laws for fixed-point logics (see [14, 47]),
and thereby highlighted the important role that finite-variable logics can play
in definability theory over finite structures. Hella, Kolaitis, and Luosto [41]
further illuminated the situation by showing that FO and Lωω1ω are almost
everywhere equivalent with respect to the uniform measure, that is, there is a
set C ⊆ G of limit density one such that FO and Lωω1ω define exactly the same
collection of queries over C (even including non-Boolean queries). Dawar [22],
Grohe [33], and Otto [54] are valuable sources of information about the finite
model theory of finite-variable logics. The following chapters offer many other
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compelling illustrations of the use of definability theory to yield insight into a
wide range of mathematical and computational phenomena. Before exploring
some of these examples, let us look at some other important notions from
definability theory which receive extended treatment in Chap. 2.

1.1.4 Distinguishing Structures: L-Equivalence and Comparison
Games

One approach to the question whether a query Q is definable in a logic L is to
ask whether Q distinguishes between graphs which are indistinguishable from
the point of view of L. Two graphs G and H are L-equivalent (G ≡L H),
that is, indistinguishable from the point of view of L, if and only if, for every
L-definable query Q,

G ∈ Q ⇐⇒ H ∈ Q.

Clearly, a query Q must be closed under L-equivalence if it is L-definable.
When L is first-order logic, L-equivalence is the notion of elementary equiv-

alence familiar from classical model theory. The classification of infinite struc-
tures up to elementary equivalence plays a central role in classical model
theory and in its applications to algebra and analysis. On the other hand,
as observed above, elementary equivalence coincides with isomorphism on G
(and on the class of finite structures in general), so the foregoing necessary
condition is deprived of direct application to definability over G with respect
to any logic extending FO. This suggests that analysis of L-equivalence for
logics L weaker than, or orthogonal to, first-order logic may be of paramount
importance in the context of finite model theory. Indeed, this is the case. Let
us approach the matter from the point of view of combinatorial comparison
games between graphs.

Suppose we want to compare (finite or countably infinite) graphs G and
H with the object of determining whether or not they are isomorphic. One
way of doing so (inspired by the celebrated Cantor “back-and-forth” argu-
ment mentioned above) would be to play the following game. The game has
two players, Spoiler and Duplicator; the equipment for the game consists of
“boards” corresponding to the graphs G and H and pebbles a1, a2, . . . and
b1, b2, . . . . The game is organized into rounds r1, r2, . . . . At each round ri
the Spoiler plays first and picks one of the pair of pebbles ai or bi to play
onto a vertex of G or H , respectively; the Duplicator then plays the remain-
ing pebble of the pair onto a vertex of the structure into which the Spoiler
did not play. This completes the round. Let vi (and wi) be the vertex of G
(and of H , respectively) pebbled at round i, let Gi and Hi be the subgraphs
of G and H induced by {v1, . . . , vi} and {w1, . . . , wi}, respectively, and let
Ri = {〈vj , wj〉 | 1 ≤ j ≤ i}. The Duplicator loses the game at round ri if
the relation Ri fails to be the graph of an isomorphism from Gi onto Hi. The
Duplicator wins the game if she does not lose at any round. The Duplicator
has a winning strategy for the game if she has a method of play which results
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in a win for her no matter how the Spoiler plays. In this case, we say that G
is partially isomorphic to H (G ∼=p H).

It is easy to see that the Duplicator has a winning strategy for this game
played on finite or countably infinite graphs G and H if and only if G is
isomorphic to H. Indeed, if I is an isomorphism from G onto H , and the
Spoiler pebbles the vertex v in G at some round, then the Duplicator will
guarantee a win by pebbling I(v) in H (and similarly, if the Spoiler plays
onto w in H , then the Duplicator answers by playing onto I−1(w) in G).
On the other hand, suppose the Duplicator has a winning strategy for the
game played on G and H . Then, she can win against the following strategy
of Spoiler. The Spoiler can enumerate the vertices of G as s0, s1, . . . and the
vertices of H as t0, t1, . . . . Now the Spoiler plays according to the following
strategy. For i ≥ 0, at round r2i+1 he places the pebble a2i+1 on si and at
round r2i+2 he places the pebble b2i+2 on ti. The Duplicator now answers
the Spoiler’s moves according to her winning strategy. It follows at once that
the relation R =

⋃
i∈N Ri is the graph of an isomorphism from G onto H.

So, if G and H are countable, and G ∼=p H, then G ∼= H. Carol Karp [46]
established an interesting connection between partial isomorphism and logical
definability: arbitrary graphs G and H are partially isomorphic if and only
if they are L∞ω-equivalent (L∞ω strengthens Lω1ω by allowing conjunctions
over arbitrary, not necessarily countable, sets of formulas).

Various modifications of this game, which deprive the players of some
of their access to resources, or alter the winning condition, or add rules that
restrict legitimate play, lead to useful characterizations of equivalence for much
weaker languages. Let us consider some examples of these.

First, we might restrict the number of pebble pairs that are available for
the game, and allow players to replay pebbles that they have played earlier
in the game. If the Duplicator has a winning strategy for the foregoing game
played on G and H when the equipment consists of only k pairs of pebbles, we
say that G is k-partially isomorphic to H (G ∼=k

p H). This variant is discussed
at length in Chap. 2 where a proof sketch of Barwise’s result [9] that for all
G and H , G ∼=k

p H if and only if G is Lk∞ω-equivalent to H is presented. We
have already seen one application of this result to definability over G: it is
easy to see that for all G,H ∈ G, if G |= ηk and H |= ηk, then G is k-partially
isomorphic to H ; it follows at once from Barwise’s result that for every Lk∞ω

sentence ϕ, ηk implies ϕ, or ηk implies ¬ϕ, which is the key step in Kolaitis
and Vardi’s proof of the 0–1 law for Lk∞ω.

Second, we might restrict the length of play, so the Duplicator need only
successfully respond to the Spoiler’s moves through some fixed finite number
n of rounds in order to win. This is called the n-round Ehrenfeucht–Fräıssé
(E–F) game. As discussed in Chap. 2, these games give a characterization of
definability in a hierarchy of fragments of first-order logic; in particular, the
Duplicator has a winning strategy for the n-round E–F game played on G
and H if and only if G and H are FOn-equivalent, where FOn is the frag-
ment of first-order logic consisting of all sentences of quantifier rank bounded
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by n. This is the key to using logical indistinguishability to establish that
queries are not first-order definable over G despite the fact that first-order
indistinguishability coincides with isomorphism over G. In order to show that
a query Q is not first-order definable, it suffices to show that for every n there
are FOn-equivalent G and H with G ∈ Q and H �∈ Q. Chapter 2 includes
several examples of this technique, among them the queries Conn and Colork
mentioned earlier.

Third, we might require that beyond the first round, the Spoiler play onto
a vertex that is adjacent to some vertex which has been pebbled at an ear-
lier round. The single-pebble variant of the game thus restricted characterizes
the relation of bisimilarity between vertex-colored directed graphs. Johan van
Benthem first introduced this relation and recognized its significance in con-
nection with the study of Kripke models for modal logic [11, 12]; the notion
was rediscovered in the context of analyzing the “behavioral equivalence” of
transition systems [42, 57]. Chapter 7 elucidates the fundamental importance
of bisimilarity invariance in explaining various nice features of modal logic.

Fourth, we might require that the Spoiler always play onto a vertex of G.
In this case, by virtue of the asymmetry of play, a win for Duplicator in the
resulting game no longer characterizes an equivalence relation between graphs,
but rather a preorder. In particular, the Duplicator has a winning strategy for
this variant of the game if and only if every existential sentence of L∞ω which
is true in G is also true in H. If, in addition, we relax the winning condition
to require only that at the end of each round ri the relation Ri is the graph of
a homomorphism from G to H , then the Duplicator has a winning strategy if
and only if every positive existential sentence of L∞ω that is true in G is also
true in H. This last variant, in combination with the resource restriction on
the number of pebbles discussed above, characterizes the positive existential
fragment of Lω∞ω. This fragment is of particular interest from the perspective
of database theory, since it suffices to express every Datalog-definable query;
several applications of this definability result are discussed in Chaps. 2 and 6.

1.1.5 Random Graphs and 0–1 Laws

Joel Spencer’s chapter, “Logic and random structures” (Chap. 4), gives an
exposition of a 0–1 law for first-order logic he and Saharon Shelah discov-
ered [62], and related phenomena in the theory of random graphs. From the
perspective of this theory, the uniform distribution on finite graphs consid-
ered above is an instance of a far more general scenario developed by Erdös
and Renyi in [24]. From this perspective, one considers a sequence of finite
probability spaces (Gn, μpn), where the measure μpn is determined by an “edge
probability” pn which is a function of n; the uniform distribution is just the
special case where pn = .5 for all n. Let us write μp(Q) for the limit probability
of the query Q with respect to the sequence of measures μpn, that is,

μp(Q) = lim
n−→∞μpn(Q ∩ Gn).
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In this context, combinatorists have discovered that threshold phenomena
arise, that is, there are queries Q and functions p with the property that for
all q, if q � p, then μq(Q) = 0, and if p � q, then μq(Q) = 1. (Here, p � q
if and only if limn−→∞ pn/qn = 0.) One class of cases which arose naturally
in the study of threshold phenomena is the edge probabilities p(α)n = n−α,
for some real α ∈ (0, 1). Spencer observed that among the many queries
analyzed by graph theorists, none possessed a threshold of the form n−α for
α ∈ (0, 1) and irrational. Shelah and Spencer discovered a definability result
that provided an explanation for these threshold phenomena. They showed
that for all α ∈ (0, 1), if α is irrational, then first-order logic satisfies the 0–1
law with respect to (Gn, μ

p(α)
n ), that is, for every first-order definable query

Q,
μp(α)(Q) = 0 or μp(α)(Q) = 1.

This is an outstanding example of how definability considerations can provide
insight through systematization of apparently disparate combinatorial facts.
Further investigations of the complete theories Tα = {ϕ ∈ FO | μp(α)(ϕ[G]) =
1} have revealed interesting connections with classical model theory (see [8,
51]). This aspect of definability theory has also been prominent in computer
science, as well as in combinatorics.

1.1.6 Constraint Satisfaction Problems

In Chap. 6 of the volume, “A logical approach to constraint satisfaction”,
Kolaitis and Vardi survey some applications of definability theory to the study
of constraint satisfaction problems, a subject that is important in several
areas of computer science, including artificial intelligence, database theory,
and operations research. For example, the k-colorability problem for graphs
may be formulated as a constraint satisfaction problem. Given a graph (V,E),
we may think of its vertices as variables. We ask whether there is an assignment
of k colors c1, . . . , ck, one to each variable, so as to satisfy the constraint that
adjacent variables are assigned distinct colors. Feder and Vardi [27] made
the following important observation that advanced the understanding of the
computational complexity of constraint satisfaction problems: they noted that
all such problems may be formulated as homomorphism problems on suitable
relational structures (in general, these relational structures will not be graphs).
For a simple example using graphs, recall that a homomorphism h from G =
(V,E) to H = (V ′, E′) is a map satisfying the condition

Eab⇒ E′h(a)h(b), for all a, b ∈ V.

A graph G is k-colorable if and only if there is a homomorphism from G into
Kk, the complete graph on k vertices (thought of as the colors c1, . . . , ck) –
the constraint that adjacent “variables” are assigned distinct colors by any
homomorphism is enforced by the irreflexivity of the edge relation in Kk.
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In general, a constraint satisfaction problem can be formulated as a homo-
morphism problem: given two classes of relational structures A and B, the
constraint satisfaction problem CSP(A,B) asks, for each pair of structures
A ∈ A and B ∈ B, whether or not there is a homomorphism from A to B.
Insofar as the homomorphism problem in general is NP-complete, the search
for “islands of tractability”, that is, collections of structures A and B such
that CSP(A,B) can be computed in polynomial time, is of interest.

Two cases which have been studied intensively are nonuniform and uniform
constraint satisfaction problems. The case in which B is a singleton, {B},
and A is U , the collection of all finite structures, is called the non-uniform
constraint satisfaction problem with template B – CSP(B) for short; on the
other hand, the constraint problem CSP(A,U) is called the uniform constraint
satisfaction problem with input A. To illustrate this terminology by the above
example, for each k, the k-colorability problem is the nonuniform constraint
satisfaction problem CSP(Kk). This is a suggestive example. Recall that the
2-colorability problem is solvable in polynomial time, while the k-colorability
problem is NP-complete, for each k ≥ 3. Recall too (see [50]) that if P �= NP,
then there are problems in NP which are neither NP-complete nor in P. Could
it be that nonuniform constraint satisfaction problems are so special that they
would exhibit the following remarkable dichotomy?

F–V For every template B, CSP(B) is either in P or is NP-complete.

This is the well-known Feder–Vardi Dichotomy Conjecture, which was articu-
lated in [27] as a generalization of a theorem of Schaefer [61] that established
the dichotomy for the case of templates B with a two-element domain (called
Boolean templates). Indeed, Schaefer showed that it can be decided in poly-
nomial time whether or not CSP(B) is NP-complete for any Boolean template
B. Subsequent investigations have established that the Dichotomy Conjecture
holds for other classes of templates. Generalizing the example of k-colorability,
Hell and Nešetřil [40] showed that for all templates B which are undirected
graphs, if B is bipartite, then CSP(B) is in P, while if B is not bipartite,
then CSP(B) is NP-complete. Building on a group-theoretic approach initi-
ated in [27], Bulatov extended Schaefer’s dichotomy to CSP(B) for all three
element templates B [17]. In their chapter, Kolaitis and Vardi explore defin-
ability frameworks for understanding some of the known results concerning
the conjectured dichotomy. They also show how definability theory illuminates
the study of uniform constraint satisfaction problems.

1.2 Descriptive Complexity

In the preceding section, we have traced the theme of definability as a source
of structural information as it arises in several settings throughout the vol-
ume. Let us turn our attention to another major theme, the relation between
definability and computational complexity. This is the focus of Erich Grädel’s
chapter on “Finite model theory and descriptive complexity” (Chap. 3).
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1.2.1 Satisfaction

Let us look again at the definition of a query Q being definable by a sentence
ϕ of a logic L :

ϕ defines Q if and only if ∀G ∈ G(G |=L ϕ⇔ G ∈ Q).

If we think of queries as combinatorial problems, it is natural to ask whether
we can obtain information about the computational complexity of a problem
from the fact that it is definable in one language or another. This question
focuses attention on the complexity of the satisfaction relation itself, (also
known as the model-checking problem). Vardi [68] formulated three notions
of complexity associated with the satisfaction relation for L (relative to a
collection of finite structures C). The first, called the combined complexity of
L is just the complexity of the satisfaction relation itself, viewed as a binary
relation on strings encoding structures in C on the one hand, and sentences of
L on the other. The second, called the data complexity of L, is the complexity
of the decision problems associated with L-definable queries Q over C. The
third, called the expression complexity of L, is the complexity of the decision
problems associated with the L-theories ThL(G) of finite structures G in C,
where

ThL(G) = {ϕ ∈ L | G |=L ϕ}.

The study of these notions is rooted in the great developments in logic in
the 1930s. In the first work which rigorously defined the notion of satisfac-
tion, “On the concept of truth in formalized languages,” [65], Tarski famously
resolved a basic question concerning expression complexity in the context of
infinite structures, and in descriptive terms at that: he showed that the first-
order theory of the structure N = 〈N, 0,+,×〉 is not arithmetically definable,
that is, there is no first-order formula θ(x) in the language of arithmetic such
that for all i ∈ N ,

N |= ϕ(i) ⇔ N |= χi,

where χi is the sentence in the first-order language of arithmetic with
code i. Subsequent work by Kleene and Post revealed the intimate connec-
tion between arithmetic definability and complexity as measured by Turing
degrees, thereby transforming Tarski’s undefinability result into a lower bound
on recursion-theoretic complexity. Moreover, Tarski’s definition of satisfaction
itself exhibited that the first-order theory of N could be defined by both an
existential and a universal sentence in the second-order language of arith-
metic. Again, later work by Kleene yielded a “computational” interpretation
of this descriptive result – the first-order theory of N is hyperarithmetical.

Chapter 3 presents a comprehensive overview of results concerning com-
bined, data, and expression complexity in the context of finite model theory.
One theme that runs through the chapter is the role of combinatorial games
in analyzing the combined complexity of many logics, among them first-order
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logic and various fixed-point logics, including the modal μ-calculus, a natural
fixed-point extension of propositional modal logic with applications ranging
from hardware verification to analysis of hybrid systems. The chapter begins
with an incisive analysis of the complexity of first-order logic using the tech-
nique of model-checking games G(A,ϕ) in which a Verifier and a Falsifier
compete, and Verifier has a winning strategy just in case A |= ϕ. In the case
of first-order logic, the model-checking games are positional and have a finite
game graph. The strategy problem for such games in general, “does Player
I have a winning strategy for the game from position p?”, can be solved in
linear time. Analysis of an alternating algorithm for the first-order model-
checking game yields the following information: the combined complexity of
FO is PSPACE-complete, while the combined complexity of FOk is PTIME-
complete – yet another source of interest in the finite-variable fragments.
Moreover, PSPACE-completeness follows from the fact that the satisfiability
problem for quantified Boolean formulas is easily reduced to the first-order
theory of the unary structure A = 〈{0, 1}, {0}〉, from which it follows at once
that the expression complexity of FO is also PSPACE-complete. On the other
hand, the data complexity of FO is in deterministic LOGSPACE. This gap
between expression complexity and data complexity obtains for many well-
known logics.

When we turn from first-order to second-order logic, the situation is
quite different. For example, the data complexity of the monadic existen-
tial fragment of second-order logic (mon-ESO) is NP-complete, that is, every
mon-ESO-definable query is in NP, and some such queries, for example, 3-
colorability, are NP-hard. On the other hand, as discussed in Chap. 2, there
are PTIME queries on G, for example, connectivity, which are not mon-ESO-
definable. This suggests that definability theory could be used to illuminate
differences in complexity which are not easily characterized in terms of com-
putational resources – a good example of this is the result of Ajtai and Fagin
that undirected reachability is mon-ESO-definable, while directed reachability
is not [4] (recently, Reingold has established that undirected reachability is in
DLOGSPACE, whereas directed reachability is a paradigmatic NLOGSPACE-
complete problem [58] – separating these two complexity classes remains an
outstanding open question). On the other hand, it is also interesting when
definability of queries in well-understood logics coincides with resource com-
plexity classes, from at least two points of view: first, the logical language
could then be used as a transparent specification language for queries in the
class, and second, methods of logic could be deployed in complexity-theoretic
investigations.

A logic L captures a complexity class K on a collection of structures C if
and only if, for every query Q over C,

Q is L-definable ⇔ Q ∈ K.

In 1970, Fagin [25] showed that the existential fragment of second-order logic
captures the complexity class NP over the class of all finite structures (see
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Chap. 3 for discussion and a proof). Fagin’s result launched an active search
for characterizations of other complexity classes in logical terms. Since the
natural specification of many combinatorial problems is given by an existen-
tial second-order sentence, Fagin’s Theorem provides a convenient tool for
recognizing that problems are in NP. From the point of view of specification
languages for database queries, it would be most useful to find logics that
capture complexity classes below NP. Though Fagin’s Theorem extends easily
to show that full second-order logic captures the polynomial-time hierarchy,
PH, over arbitrary finite structures, thus far no logic has been identified that
captures a complexity class presumed to be strictly contained in NP over the
collection of all finite structures. On the other hand, much has been learned
about logics that capture such complexity classes over particular collections
of finite structures. Indeed, the first capturing result was of just this kind.
In 1960, Büchi [16] showed that mon-ESO captures the collection of regular
languages over the class of string structures, that is, structures of the form
〈[n], S, P 〉, where S is the usual successor relation on [n] and P is a finite
sequence of unary predicates; it is worth noting that over string structures,
all of monadic second-order logic is no more expressive than its existential
fragment (see [63] and [32] for extended treatments of connections between
logic and automata theory). Chapter 3 shows how other fragments of second-
order logic yield characterizations of complexity classes over ordered finite
structures, that is, structures which interpret a distinguished binary relation
as a linear order on the universe. These include Grädel’s results that second-
order Horn logic (and its existential fragment) captures polynomial time on
ordered finite structures and that second-order Krom logic (and its existen-
tial fragment) captures nondeterministic logarithmic space on ordered finite
structures.

An especially active area of investigation in descriptive complexity theory
is the analysis of logics with fixed-point operators that allow for defining
queries by induction. The clarification of the nature of inductive definitions
was a task undertaken by the pioneers of modern logic. Indeed, among Frege’s
great contributions in Die Grundlagen der Arithmetik was the analysis of one
of the simplest fixed-point operators, which allows definition of the ancestral of
a relation (now called transitive closure), in the universal fragment of second-
order logic: a is an E-ancestor of b (tcxy(Exy)ab) if and only if

∀R((∀x∀y(Exy → Rxy) ∧ ∀z((Rxy ∧ Ezx) → Rzy)) → Rab).

From the point of view of descriptive complexity, transitive closures appear to
be quite weak compared with universal second-order quantification. Immer-
man [43] showed that the extension of first-order logic with the transitive-
closure operator (TC) captures NLOGSPACE over the class of ordered finite
structures, while, by Fagin’s Theorem, the universal fragment of second-
order logic captures co-NP, which has been conjectured to properly include
NLOGSPACE. If transitive closure is applied only to single-valued relations,
one obtains, as an extension of first-order logic, deterministic transitive-closure
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logic (DTC), which captures DLOGSPACE over the class of ordered finite
structures [43]. In this instance, the descriptive separation, DTC �= TC,
over the class of all finite structures was established by Grädel and McColm
[31], whereas the separation on ordered finite structures is equivalent to
the unresolved complexity-theoretic question: is DLOGSPACE distinct from
NLOGSPACE?

Richer fixed-point logics yield characterizations of PTIME and PSPACE
over ordered finite structures. Chapters 2 and 3 contain detailed developments
of logical and complexity-theoretic results concerning the least fixed-point
(LFP), inflationary fixed-point (IFP), and partial fixed-point (PFP) exten-
sions of first-order logic, including proofs that LFP captures PTIME over
ordered finite structures [43, 68], that PFP captures PSPACE over ordered
finite structures [1, 68], and that LFP = IFP over arbitrary finite struc-
tures [39] (indeed, Kreutzer established that LFP = IFP over arbitrary, not
just finite, structures [49]). In contrast to the aforementioned descriptive sepa-
ration of TC and DTC, and in spite of the fact that LFP and PFP do not cap-
ture PTIME and PSPACE over finite graphs without an ordering, Abiteboul
and Vianu [2] established that there are PFP-definable queries on finite graphs
which are not LFP-definable, if and only if PSPACE is distinct from PTIME,
a striking result which solved an open problem posed by Chandra [20].

As noted earlier, the fixed-point logics LFP, IFP, and PFP are all fragments
of Lω∞ω with respect to definability over the class of finite structures, and
consequently they lack the means to express any nontrivial cardinality queries
on finite graphs. The extension of IFP with counting quantifiers (IFP+C)
yields a logic that captures PTIME over wider classes of finite structures;
for example, Grohe established that IFP+C captures PTIME on the class of
planar graphs (in fact, on any class of structures whose Gaifman graphs are
of bounded genus) [34, 35] and on any class of structures of bounded tree-
width [36]. On the other hand, Cai, Fürer, and Immerman established that
IFP+C does not capture PTIME over the class of all finite graphs [18]. It is
natural to ask: is there a logic that captures PTIME on the class of all finite
graphs?

1.2.2 What Is a Logic for PTIME?

In order to sensibly address the preceding question, we need to refine the
notion of a logic capturing a complexity class – otherwise, for all we have said
about logics in the abstract, we might be tempted to answer that the collec-
tion of PTIME queries itself is a logic that captures PTIME. Chandra and
Harel [19] introduced the notion of an effectively enumerable query complexity
class and posed the question of whether the PTIME-computable queries are
effectively enumerable; Gurevich [38] introduced the closely related notion of
a logic for PTIME (see also [23] and [53] for further discussion of logics for
complexity classes). In order to explain this notion, we need to focus closely
on the satisfaction relation. Recall that a logic L is a pair consisting of a set
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of sentences SL and a satisfaction relation |=L . We say that L is uniformly
contained in PTIME on a collection of finite structures C if and only if SL and
|=L are decidable, and there are effectively computable functions m and t such
that for every ϕ ∈ SL, m(ϕ) is a deterministic Turing machine which decides
Q(ϕ)∩C in time nt(ϕ). Note that SO-Horn, LFP, and IFP are uniformly con-
tained in PTIME on the collection of all finite structures. A logic L effectively
captures PTIME on C if and only if L is uniformly contained in PTIME on C
and every PTIME query on C is L-definable. In this sense, a logic for PTIME
embodies a query language which can be compiled into machine code with
explicit bounds on running time, and which expresses every PTIME query.
(The notion of “effectively capturing” can easily be extended to other resource
complexity classes; for example, in the obvious sense, Fagin’s Theorem estab-
lishes that ESO effectively captures NP.)

Insofar as we have placed only quite abstract requirements on a logic L
effectively capturing PTIME, the question naturally arises whether the col-
lection Tp of nk-clocked Turing machines, for all k ∈ N, itself might not be
such a logic, where the associated satisfaction relation is just acceptance. The
problem with this suggestion is that the “queries” definable in this logic are
not necessarily queries, that is, they are not in general isomorphism-invariant.
One way of overcoming this obstacle would be to preprocess input graphs so
that a fixed representative of each isomorphism type of structure would be
presented to a clocked machine. Given an equivalence relation ∼ on G, we say
f : G −→ G is a ∼-canon if and only if, for all G,H ∈ G, G ∼ f(G) and
if G ∼ H, then f(G) = f(H). Given a Turing machine M which computes
an isomorphism canon, we could “compose” M with each of the machines
M ′ ∈ Tp and thereby arrive at a logic which captures PTIME on G; if, more-
over, M ran in polynomial time in the length of its input, this would yield a
logic that effectively captures PTIME on G. The existence of a polynomial-
time-computable isomorphism canon for graphs is a major open problem in
complexity theory. It is well known that if P = NP, then there is a polynomial-
time-computable isomorphism canon for finite graphs, though it is unknown
whether the existence of such a canon would imply that P = NP [5]. It follows
at once that if there is no logic that effectively captures PTIME on G, then
there is no polynomial-time-computable isomorphism canon for graphs, and
hence P �= NP. (Indeed, if P = NP, then existential second-order logic is a
logic for P. This follows from Fagin’s Theorem and the “polynomially uni-
form” completeness of typical NP-complete problems.) On the other hand, if
there is a polynomial-time-computable ∼-canon for a class of graphs C, then
there is a logic L that effectively captures ∼-invariant PTIME on C, that is, a
logic which is uniformly contained in PTIME and expresses all and only the
PTIME-computable queries on C which are closed under ∼. In some cases,
such as Grohe’s capturing results for IFP+C cited above, there is a “familiar”
logic that does the capturing. Another example of this phenomenon is Otto’s
result [55] that bisimulation-invariant PTIME is uniformly captured by the
multidimensional μ-calculus (see Chap. 3 and references there).
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1.3 Finite Model Theory and Infinite Structures

The concluding section of Chap. 3 surveys several areas where the perspective
of descriptive complexity theory has been extended to the study of certain
classes of infinite structures. Such extension requires, at minimum, that the
structures in question be finitely presentable and that the satisfaction relation
be computable when restricted to the given setting (structures and language).
One active research direction here is the study of automatic structures, that is,
structures whose universe and relations are regular sets of strings. Automatic
structures have nice closure properties from the point of view of definability
theory; for example, all first-order-definable relations on such structures are
regular, and so the expansion of an automatic structure by first-order-definable
relations is itself automatic, a property not shared, for example, by recursively
presented structures.

Another research direction where the point of view of descriptive com-
plexity is extended to infinite structures is the study of metafinite structures,
which were introduced by Grädel and Gurevich in [30]. A paradigmatic exam-
ple of such structures is edge-weighted graphs. Here one has a finite graph
and a numerical structure, such as the ring Z or the ordered field R, and
a function which assigns weights in the numerical structure to edges in the
graph. Such two-sorted structures arise naturally in several areas of com-
puter science, including database theory, optimization theory, and complexity
theory. A hallmark of metafinite model theory is the simplicity of the lan-
guages deployed to describe these hybrid structures. In particular, there is
no quantification allowed over the numerical structure, indeed, no variables
which admit assignment from the numerical domain. The only access to the
numerical structure is via weight terms that assign numerical values to tuples
from the nonnumerical sort, and terms which combine these by use of opera-
tions on the numerical universe. Following [30], Chap. 3 shows how the notion
of a generalized spectrum admits two extensions to the context of metafi-
nite structures (one allowing projection of weight functions, in addition to
projection of relations on the finite structure). In the context of arithmeti-
cal structures (those whose numerical part consists of the standard model of
arithmetic with additional polynomial-time-computable multiset operations)
with “small weights”, the more restricted notion of a generalized spectrum
captures NP, whereas on arithmetical structures in general, the wider notion
captures the class of all recursively enumerable relations. Chapter 3 con-
cludes with a proof of the result, due to Grädel and Meer, that in the case of
metafinite structures whose numerical part is the real ordered field extended
with constants for all real numbers, the wide notion of a metafinite spectrum
captures NPR, the collection of nondeterministic polynomial-time-acceptable
relations on the reals in the Blum–Schub–Smale model of computation over the
reals [15].
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A third area which involves a blend of finite and classical model the-
ory is the study of “Embedded finite models and constraint databases”, the
subject of Leonid Libkin’s chapter (Chap. 5). In the context of geographical
information systems, the management of spatio-temporal data, bioinformatics,
and numerous other database application areas, it is useful to look at rela-
tional data over infinite sets which may themselves be endowed with additional
structure. The approach via constraint databases, pioneered by Kanellakis et
al. [45], where, for example, geographical regions are stored as logical formu-
las that define them, via coordinatization, over the real ordered field R or the
real ordered group, has proven to be fruitful. In this context, new definability
questions arise; for example, can one define topological connectivity of (defin-
able) spatial regions? As discussed in Chap. 5, the work of Grumbach and
Su [37] revealed that many definability questions of this kind could be reduced
to definability questions about embedded finite structures, that is, finite struc-
tures whose domain is drawn from some ambient infinite structure such as the
real ordered field. For example, if G is a finite graph whose vertices are real
numbers, then the expansion A = 〈R, EG〉 of R is an embedded finite model
with “active domain” the set of nonisolated vertices of G. Now, it can be shown
that there is a first-order formula ϕ(x, y) such that the region in R2 defined by
ϕ in A is topologically connected, if and only if G is a connected graph. Thus,
if topological connectivity of definable planar regions were first-order-definable
in R, then connectivity of embedded finite graphs would also be definable over
{〈R, E〉 | E ⊂fin R2}. This is exactly the point at which embedded finite model
theory comes into play in offering a variety of techniques to answer definabil-
ity questions of the latter sort. One of the main thrusts of embedded finite
model theory is to establish “collapse results”, which reduce questions about
definability over embedded finite structures to questions about definability
over finite structures. It turns out that general model-theoretic conditions
on the ambient infinite structure are of paramount importance in determin-
ing the extent to which such collapse results obtain. Chapter 5 provides a
detailed account of such phenomena. These phenomena provide considerable
evidence that infinite structures which are well-behaved from the point of
view of definability theory in the infinite are similarly tame with respect to
embedded finite structures. For example, Benedikt et al. [10] have shown that
if M is an o-minimal structure and Q is an order-generic query on finite struc-
tures A embedded in M, which is first-order definable over 〈M,A〉, then Q
is first-order definable (with order) over finite structures A; the real ordered
field is a paradigmatic o-minimal structure, and recent work in model theory
has established the o-minimality of various of its extensions [66, 70]. Baldwin
and Benedikt [7] have shown, more generally, that the same collapse obtains
for any M which lacks the independence property, a condition familiar from
stability theory. Chapter 5 reveals deep connections between the independence
property and definability over embedded finite models.
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1.4 Tame Fragments and Tame Classes

The book concludes with a concise, modern introduction to modal logic,
“Local variations on a loose theme: modal logic and decidability”, by Maarten
Marx and Yde Venema (a comprehensive treatment in this spirit can be found
in [13]). Modal logics have numerous applications to computer science, rang-
ing from specification of hybrid systems to knowledge representation, and
these applications rest on the delicate balance between the expressive power of
modal languages and their good algorithmic properties. The chapter provides
an incisive analysis of this balance (other useful discussions include [29, 69]).

Propositional modal languages can be viewed, via the Kripke modeling,
as vehicles for expressing unary queries over labeled transition systems, that
is, structures whose universe consists of a collection of states equipped with
binary “accessibility” relations and unary labels. When viewed in this way, a
propositional modal sentence ϕ, such as

P → �(¬P ∧�P ),

can be translated into a first-order formula ϕ◦ with one free variable,

P (x) → ∀y(Rxy → (¬P (y) ∧ ∃x(Ryx ∧ P (x)))),

so that, for any Kripke model M = 〈UM , RM , PM 〉 and any s ∈ UM ,

M, s � ϕ⇔M |= ϕ◦[s].

For example, if M is the structure with

UM = {1, 2, 3}, RM = {〈1, 1〉, 〈1, 2〉, 〈2, 3〉, 〈3, 2〉}, PM = {1, 3},

then ϕ◦ defines the set {2, 3} in M. It is easy to check that for any basic modal
sentence ϕ, ϕ◦ is in the the two-variable fragment of first-order logic, and all
quantifiers in ϕ◦ are relativized to the collection of states directly accessible
from a given state. The collection of translations of modal sentences is called
the modal fragment of first-order logic.

Chapter 7 emphasizes that bisimulation invariance is the fundamental
property of the modal fragment of first-order logic. As mentioned above, bisim-
ilarity can be characterized in terms of a simple one-pebble comparison game.
Kripke structures M and M ′ with states s ∈ M and s′ ∈ M ′ are bisimilar if
and only if the Duplicator has a winning strategy in the following game. Ini-
tially, pebbles are placed on the distinguished states s and s′. At each round of
play, the Spoiler chooses one of the pebbles and moves it to a state accessible
from the state on which it lies. The Duplicator must move the other pebble
in like fashion, and to a state which is labeled identically to the state onto
which Spoiler has moved. The game ends with a win for the Spoiler if the
Duplicator cannot thus move at some round. Otherwise, the Duplicator wins
the (perhaps infinite) play of the game.
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It is easy to check that every formula in the modal fragment is bisimulation
invariant; that is, if M, s is bisimilar to M ′, s′ then

M |= ϕ◦[s] ⇔M ′ |= ϕ◦[s′],

for every modal sentence ϕ. The authors show that by “unraveling” a Kripke
structure M at a state s one can create a tree model M ′ (that is, 〈U ′, RM

′〉 is a
directed tree) that is bisimilar to M at s (the unraveling consists of collecting
all finite walks in M starting at s and ordering them by immediate extension).
Thus, any bisimulation-invariant language has the “tree model” property. The
authors refer to this as the looseness property of modal logic, and identify it
as one of the sources of the good algorithmic behavior of modal logics. They
observe that this is not the entire story, and note that modal logics also
exhibit some interesting locality properties that also partly account for the
relatively low complexity of their satisfiability and model-checking problems.
Indeed, since there are continuum-many bisimulation-invariant queries even
on finite labeled transition systems, the tree model property could not be the
complete account for the computational tameness of the modal fragment. The
authors identify two locality properties that are important in explaining the
behavior of modal logic. The first is related to the Hanf and Gaifman locality
of first-order logic as discussed in Chap. 2 (note that modal depth equates to
quantifier depth in the modal fragment); the second is related to the fact that
the modal fragment is contained in FO2.

The connection between bisimilarity invariance and modal definability is
intimate – Johan van Benthem established [11, 12] a preservation theorem for
the modal fragment: every bisimulation-invariant first-order formula is equiv-
alent to a formula in the modal fragment. Eric Rosen [59] showed that this
preservation theorem persists to the class of finite structures; that is, if a for-
mula of first-order logic is preserved under bisimulation over the collection of
finite Kripke structures, then it is equivalent, over finite Kripke structures,
to a formula in the modal fragment. This result provides evidence that the
modal fragment is tame not only from an algorithmic point of view, but also
from the point of view of finite model theory. How so? Several well-known
preservation theorems from classical model theory fail when relativized to
finite structures. For example, Tait [64] showed that the �Loś–Tarski existen-
tial preservation theorem does not persist to the class of finite structures –
there is a first-order sentence that is preserved under extensions relative to the
collection of finite structures, but is not equivalent over finite structures to an
existential sentence. An even more telling example in the current context is the
failure of a preservation theorem for the two-variable fragment of first-order
logic to persist to the class of finite structures. A query is 2-invariant if and
only if it is closed under L2∞ω equivalence. Immerman and Kozen [44] showed
that if a query is 2-invariant and first-order definable, then it is expressible
by a sentence of FO2. This result does not persist to the finite case; for exam-
ple, the collection of finite linear orderings is 2-invariant and FO3-definable
with respect to the collection of finite structures, but is not FO2-definable



22 1 Unifying Themes in Finite Model Theory

over finite structures. So the modal fragment is in some sense tamer than
the two-variable fragment with respect to model theory over the class of finite
structures. Otto [56] has proved a generalization of Rosen’s preservation result
which gives yet more evidence that the tameness of modal finite model theory
is connected to the relativization of quantification in the modal fragment. He
established that any formula of FO2 that is invariant under guarded bisimu-
lations with respect to the class of finite structures is equivalent, over finite
structures, to a formula in the guarded fragment of FO2. Chapter 7 explains
how the guarded fragment of first-order logic is a natural extension of the
modal fragment and discusses aspects of its good algorithmic behavior. Ross-
man [60] recently established that the homomorphism preservation theorem
persists to finite structures, that is, if a first-order definable query is closed
under homomorphisms with respect to the class of finite structures, then it
is equivalent over finite structures to a positive existential sentence. So, in
the sense to hand, the positive existential fragment of first-order logic is also
“tame” for finite model theory. It is worth noting that some fragments that
are ill-behaved with respect to the collection of all finite structures may be
tame with respect to interesting subclasses. Though the existential preserva-
tion theorem fails over the collection of all finite structures, Atserias, Dawar,
and Grohe [6] have shown that it holds with respect to classes of finite struc-
tures of bounded degree and bounded tree-width. To echo a motto proposed
by Hrushovski (“model theory = geography of tame mathematics” [67]), a
geography of tame fragments and tame classes may yield some insight into
finite model theory.
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2

On the Expressive Power of Logics
on Finite Models

Phokion G. Kolaitis

2.1 Introduction

Finite model theory can be succinctly described as the study of logics on
classes of finite structures. In addition to first-order logic, various other logics
have been explored in the context of finite model theory, including fragments
of second-order logic, logics with fixed-point operators, infinitary logics, and
logics with generalized quantifiers. Some typical classes of finite structures on
which these logics have been investigated are the class of all finite graphs, the
class of all finite ordered graphs, the class of all finite planar graphs, the class
of all finite strings, and the class of all finite trees.

Finite model theory provides a conceptual and methodological framework
for exploring the connections between logic and several key areas of computer
science, such as database theory, computational complexity, and computer-
aided verification. This is perhaps the primary motivation for developing finite
model theory. As its development progressed, however, it became clear that
finite model theory was an area of research that deserved to be studied in
its own right. While the traditional focus of mathematical logic has been
on fixed infinite structures or on classes of finite and infinite structures, it
has turned out that new phenomena emerge when one focuses on classes of
finite structures. These phenomena give finite model theory its own distinctive
character and set it apart from other areas of mathematical logic.

There are three main areas of research in finite model theory: the study of
the expressive power of logics on finite structures; the study of the connections
between logic and computational complexity, an area which is also known as
descriptive complexity; and the study of the connections between logic and
asymptotic probabilities. The first of these three areas is the focus of the
present chapter.
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2.2 Basic Concepts

A vocabulary is a finite set σ = {R1, . . . , Rm, c1, . . . , cs} of relation sym-
bols of specified arities, and constant symbols. A σ-structure is a tuple
A = (A,RA

1 , . . . , RA
m, cA1 , . . . , cAs ) such that A is a nonempty set, called the

universe of A, each RA
i is a relation on A such that arity(RA

i ) = arity(Ri),
1 ≤ i ≤ m, and each cAj is a distinguished element of A, 1 ≤ j ≤ s. A finite
σ-structure is a σ-structure A whose universe A is a finite set. In what fol-
lows, we shall assume that the universe of every finite structure is an initial
segment {1, . . . , n} of the integers. If the vocabulary is understood from the
context, we shall simply use the terms “structure” and “finite structure”. Also,
whenever no confusion arises and in order to simplify the notation, we shall
use the same symbol for both a relation (constant) symbol and the relation
(distinguished element) interpreting it on a structure.

Let us assume that A = (A,RA
1 , . . . , RA

m, cA1 , . . . , cAs ) and B =
(B,RB

1 , . . . , RB
m, cB1 , . . . , c

B
s ) are two σ-structures. An isomorphism between

A and B is a mapping h : A→ B that satisfies the following conditions:

• h is a one-to-one and onto function.
• For every constant symbol cj , 1 ≤ j ≤ s, we have that h(cAj ) = cBj .
• For every relation symbol Ri, 1 ≤ i ≤ m, of arity t and for every

t-tuple (a1, . . . , at) from A, we have that RA
i (a1, . . . , at) if and only if

RB
i (h(a1), . . . , h(at)).

A structure B = (B,RB
1 , . . . , RB

m, cB1 , . . . , c
B
s ) is a substructure of A if B ⊆

A, each RB
i is the restriction of RA

i to B (which means that RB
i = RA

i ∩Bt,
where t is the arity of Ri), 1 ≤ i ≤ m, and cBj = cAj , 1 ≤ j ≤ s. If A is a
σ-structure and D is a subset of A, then the substructure of A generated by
D is the structure A � D having the set D ∪ {cA1 , . . . , cAs } as its universe and
having the restrictions of the relations RA

i on D∪{cA1 , . . . , cAs } as its relations.
A partial isomorphism from A to B is an isomorphism from a substructure

of A to a substructure of B. From the preceding definitions, it follows that
every partial isomorphism from A to B must map each constant cAj of A to
the constant cBj , 1 ≤ j ≤ s.

The following examples illustrate some of these concepts. A directed graph
is a structure G = (V,E), where E is a binary relation on V . An undi-
rected graph or, simply, a graph is a structure G = (V,E) such that E is
a binary symmetric relation on V without self-loops. The subgraph of G
induced by a set D of nodes is precisely the substructure of G generated
by D. A directed graph with two distinguished nodes s and t is a structure
G = (V,E, s, t). An ordered directed graph is a structure G = (V,E,≤),
where E is a binary relation on V and ≤ is a linear order on V . A k-colored
directed graph is a structure G = (V,E, P1, . . . , Pk), where E is a binary rela-
tion on V and each Pi is a unary relation on V consisting of all nodes of
color i, 1 ≤ i ≤ k. Finally, a binary string of length n can be thought of as
a structure S = ({1, 2, . . . , n}, P ), where P is a unary relation on {1, . . . , n}
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such that i ∈ P if and only if the ith bit of the string is equal to 1, where
1 ≤ i ≤ n. For instance, the string 10001 can be identified with the finite
structure ({1, 2, 3, 4, 5}, {1, 5}).

The concept of a query, which originated in database theory, is one of
the most fundamental concepts in finite model theory. We now give a precise
definition and present several examples.

Definition 2.2.1. Let σ be a vocabulary and k a positive integer.

• A class of σ-structures is a collection C of σ-structures that is closed under
isomorphisms, which means that if A ∈ C and B is a structure that is
isomorphic to A, then B ∈ C.

• A k-ary query on a class C is a mapping Q with domain C and such that
– Q(A) is a k-ary relation on A, for A ∈ C;
– Q is preserved under isomorphisms, which means that if h : A→ B is

an isomorphism, then Q(B) = h(Q(A)).
• A Boolean query on a class C is a mapping Q : C → {0, 1} that is preserved

under isomorphisms, i.e., if A is isomorphic to B, then Q(A) = Q(B).
Consequently, Q can be identified with the subclass C′ = {A ∈ C : Q(A) =
1} of C.

Example 2.2.2. Consider the following queries on graphs G = (V,E).

• The Transitive Closure query TC is the binary query such that

TC(G) = {(a, b) ∈ V 2: there is a path from a to b}.

• The 2-Disjoint Paths query is the 4-ary query 2DP such that

2DP (G) = {(a, b, c, d) ∈ V 4: there are two node-disjoint paths from a to b

and from c to d}.

• The Articulation Point query is the unary query AP such that

AP (G) = {a ∈ V : a is an articulation point of G}.

• The Even Cardinality query EV EN is the Boolean query such that

EV EN(G) =
{

1 if G has an even number of nodes
0 otherwise.

• The Connectivity query CN is the Boolean query such that

CN(G) =
{

1 if G is connected
0 otherwise.

• The Boolean queries Eulerian, Acyclicity, k-Colorability, and
Hamiltonian Path are defined in an analogous way.
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Queries are mathematical objects that formalize the concept of a “prop-
erty” of structures and of elements of structures. This formalization makes
it possible to define and study what it means for such a “property” to be
expressible in some logic. In other words, we shall use logic as a specification
language of “properties” of structures and of elements of structures.

Definition 2.2.3. Let L be a logic and C a class of σ-structures.

• A k-ary query Q on C is L-definable if there is an L-formula ϕ(x1, . . . , xk)
with x1, . . . , xk as free variables and such that for every A ∈ C,

Q(A) = {(a1, . . . , ak) ∈ Ak : A |= ϕ(a1, . . . , ak)}.

• A Boolean query Q on C is L-definable if there is an L-sentence ψ such
that for every A ∈ C,

Q(A) = 1 ⇐⇒ A |= ψ.

• L(C) denotes the collection of all L-definable queries on C.

Two remarks are in order now. First, it should be emphasized that the
concept of an L-definable query Q on a class C of σ-structures is a concept of
uniform definability. This means that the same L-formula serves as a speci-
fication of the query on every structure in C, which is entirely analogous to
the requirement that an algorithm for a problem must produce the correct
answer on every instance of the problem. Along these lines, note that if a
query Q is L-definable on C and C′ is a subclass of C, then the restriction of
Q on C′ is also L-definable using the formula that defines it on C. Second,
the concept of an L-definable query on a class C makes sense for an arbitrary
class of σ-structures, which may very well consist of both finite and infinite
structures, or only infinite structures, or only finite structures. In particular,
this concept contains the following important cases as special cases:

1. C is the class S of all (finite and infinite) σ-structures. This is the primary
case of uniform definability studied in classical model theory.

2. C consists of a single infinite structure A (and all its isomorphic copies).
This is the case of local definability on a fixed structure. The two primary
examples are the structure N = (N,+,×) of arithmetic and the structure
R = (R,+,×) of analysis, where N is the set of all natural numbers and
R is the set of all real numbers.

3. C is the class F of finite σ-structures. As stated earlier, this means that
F consists of all σ-structures with universe {1, . . . , n} for some positive
integer n. This is the primary case of uniform definability studied in finite
model theory.

We now present several examples of queries that are definable in first-
order logic or in fragments of second-order logic. We assume familiarity with
the syntax and semantics of first-order logic and second-order logic (see [20]
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for the precise definitions). Informally, first-order logic FO over a vocabulary
σ has (first-order) variables that are interpreted by elements of the structure
at hand; has atomic formulas of the form s1 = s2 and Ri(s1, . . . , st), where
Ri is a relation symbol and each sj is a variable or a constant symbol; has the
standard propositional connectives ¬, ∨, ∧, →; and, finally, has first-order
quantifiers ∀x and ∃x, for each variable x, that range over elements of the
universe of the structure at hand.

Example 2.2.4. The following queries are first-order definable on the class of
all (finite or infinite) graphs.

• The Boolean query “the graph G has an isolated node” is definable by the
first-order formula

(∃x)(∀y)(¬E(x, y)).

• The unary query “the node x has at least two distinct neighbors” is defin-
able by the first-order formula

(∃y)(∃z)(¬(y = z) ∧ E(x, y) ∧E(x, z)).

Similarly, for each fixed k, the Boolean query “G is a k-regular graph”
(i.e., each node has exactly k neighbors) is first-order definable.

• The binary query “there is a path of length 2 from x to y” is definable by
the first-order formula

(∃z)(¬(x = z) ∧ ¬(y = z) ∧ E(x, z) ∧ E(z, y)).

The syntax of second-order logic SO is obtained by augmenting the syntax
of first-order logic with second-order variables X,Y, . . . and second-order quan-
tifiers ∃X, ∃Y, . . . ,∀X, ∀Y, . . . that are interpreted by relations of fixed arities
over the universe of the structure at hand. Existential second-order logic ESO
and universal second-order logic USO are the syntactically simplest fragments
of second-order logic. Specifically, ESO consists of all second-order formulas
of the form

(∃S1) · · · (∃Sm)ϕ(x, S1, . . . , Sm),

where each Si is a second-order variable, 1 ≤ i ≤ m, and ϕ(x, S1, . . . , Sm)
is a first-order formula. In a dual manner, USO consists of all second-order
formulas of the form

(∀S1) · · · (∀Sm)ϕ(x, S1, . . . , Sm),

where each Si is a second-order variable, 1 ≤ i ≤ m, and ϕ(x, S1, . . . , Sm)
is a first-order formula. Monadic second-order logic MSO is the fragment
of second-order logic consisting of all second-order formulas in which every
second-order quantifier is applied to a unary second-order variable, which
means that all second-order quantifiers in the formula range over subsets of
the universes of structures. Existential monadic second-order logic consists of
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all formulas that are both ESO formulas and monadic second-order formulas.
Similarly, universal monadic second-order logic consists of all formulas that
are both USO formulas and monadic second-order formulas.

Example 2.2.5. The following queries are definable in existential monadic
second-order logic on the class of all (finite or infinite) graphs:

1. The Boolean query Disconnectivity is definable by the formula

(∃S)((∃x)S(x) ∧ (∃y)¬S(y) ∧ (∀z)(∀w)(S(z) ∧ ¬S(w) → ¬E(z, w))).

Intuitively, this sentence asserts that there are two disjoint, nonempty sets
of nodes with no edge between them.

2. The Boolean query 2-Colorability is definable by the formula

(∃R)(∀x)(∀y)(E(x, y) → (R(x) ↔ ¬R(y))).

Intuitively, the two colors are encoded by R and the complement of R.
3. For every k ≥ 3, the Boolean query k-Colorability is definable by

a formula of existential monadic second-order logic with k − 1 existen-
tial monadic quantifiers. The formula is similar to the one above used to
define 2-Colorability: each of the k−1 monadic second-order variables
encodes a different color, while the kth color is encoded by the comple-
ment of the union of these k−1 colors. Indeed, the reader may verify that
�log k� existential monadic quantifiers suffice.

Example 2.2.6. The Well-Foundedness Boolean query is definable on the
class of all linear orders (V,≤) by the following formula of universal monadic
second-order logic:

(∀S)((∃x)S(x) → (∃y)(S(y) ∧ (∀z)(S(z) → y ≤ z))).

Example 2.2.7. The Boolean query Hamiltonian Path is definable on the
class of all finite graphs G = (V,E) by an existential second-order formula
that asserts that

(∃T )( (“T is a linear order on V ”)∧
(∀x)(∀y)(“y is the successor of x in T ” → E(x, y))),

where T is a second-order variable of arity 2. In the above formula, the prop-
erties “T is a linear order on V ” and “y is the successor of x in T ” are clearly
expressible in first-order logic.

Example 2.2.8. The Boolean query Rigidity (i.e., given a graph G = (V,E),
is the identity function its only automorphism?) is definable on the class of
all finite graphs by a universal second-order formula that asserts that

(∀S)(“S encodes an automorphism of G” → (∀x)S(x, x)),

where S is a binary relation symbol.
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The expressive power of a logic L on a class C of finite structures is mea-
sured by the collection L(C) of L-definable queries on C. As a general rule,
the expressive power of a logic L is context-dependent , that is to say, L(C)
depends on the class C on which the logic L is studied. For instance, first-
order logic has very high expressive power on the structure N = (N,+,×) of
arithmetic, since every recursively enumerable relation is first-order definable
on N. In contrast, first-order logic has limited expressive power on the class of
all (finite or infinite) graphs, since properties as basic as Connectivity and
Acyclicity are not first-order definable. First-order logic has limited expres-
sive power on the class of all finite graphs as well. In particular, none of the
following queries is first-order definable on finite graphs: Even Cardinality;
Connectivity; Acyclicity; Planarity; Eulerian; k-Colorability, for
every fixed k ≥ 2; and Hamiltonian Path. Actually, it is fair to say that no
property of finite graphs that requires recursion is first-order definable.

The central question about the expressive power of a logic L on a class C
of structures is to determine which queries on C are L-definable and which are
not. Clearly, to show that a query Q on C is L-definable, it suffices to find some
L-formula that defines it on every structure in C. In contrast, showing that Q is
not L-definable is in principle a more challenging task, since it entails showing
that no formula of L defines the property. In many respects, this is analogous
to the difference between establishing upper and lower bounds on the compu-
tational complexity of an algorithmic problem. For this reason, much of the
investigation of the expressive power of a logic centers on the development of
techniques for showing that queries are not definable in that logic.

There are three main tools for investigating the expressive power of first-
order logic:

• the Compactness Theorem;
• the method of ultraproducts;
• the method of Ehrenfeucht–Fräıssé games.

The Compactness Theorem and the method of ultraproducts are direct and
effective tools for analyzing the expressive power of first-order logic on the class
of all (finite or infinite) structures over a given vocabulary. To illustrate this
point, let us recall the standard proof that Connectivity is not first-order
definable on the class of all graphs. Towards obtaining a contradiction, assume
that there is a first-order sentence ψ such that for every graph G = (V,E)
we have that G |= ψ if and only if G is connected. Let c′, d′ be two constant
symbols and, for every n ≥ 1, let ϕn be a first-order sentence asserting that
there is no path of length n from c to d. Then every finite subset of the set

T = {ϕn : n ≥ 1} ∪ {ψ}

has a model (for instance, a sufficiently long path with c and d as its end-
points). Consequently, the Compactness Theorem implies that T has a model
G = (V,E, c, d). This, however, gives rise to a contradiction. Indeed, on the
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one hand, G is connected, since G |= ψ; in particular, there is a path from
(the distinguished element interpreting) c to (the distinguished element inter-
preting) d in G. On the other hand, however, there is no path from c to d in
G, since G |= ϕn, for every n ≥ 1.

Although the above proof establishes that Connectivity is not first-order
definable on the class of all graphs, it does not establish that this property
is not first-order definable on the class of all finite graphs. The reason is that
the model of T guaranteed to exist by the Compactness Theorem need not be
finite. In general, it may very well be the case that every finite subset of a set
T of first-order sentences has a finite model, but that T itself has only infinite
models. Therefore, a proof that uses the Compactness Theorem to show that
a query is not first-order definable on all structures does not automatically
translate to a proof that the query is not first-order definable on all finite
structures. Similar obstacles arise when using the method of ultraproducts.
While it is still possible to use the Compactness Theorem and the method
of ultraproducts to study the expressive power of first-order logic on finite
structures [29], the use of these tools is often somewhat cumbersome or not
intuitive. In contrast, the method of Ehrenfeucht–Fräıssé games is a tool that
has been successfully applied to the study of first-order logic in finite model
theory. Furthermore, it is a flexible and extendible tool, since variants of
Ehrenfeucht–Fräıssé games can be formulated and used to study the expressive
power of logics that are stronger than first-order logic and do not possess the
Compactness Theorem.

2.3 Ehrenfeucht–Fräıssé Games for First-Order Logic

This section is devoted to a presentation of the Ehrenfeucht–Fräıssé games
and their applications to the analysis of the expressive power of first-order
logic on finite structures.

Definition 2.3.1. Let r be a positive integer, σ a vocabulary, and A and B
two σ-structures.

The r-move Ehrenfeucht–Fräıssé game on A and B is played between two
players, called the Spoiler and the Duplicator, according to the following rules.

Each run of the game has r moves. In each move, the Spoiler plays first
and picks an element from the universe A of A or from the universe B of B;
the Duplicator then responds by picking an element from the universe of the
other structure (i.e., if the Spoiler has picked an element from A, then the
Duplicator picks an element from B, and vice versa). Let ai ∈ A and bi ∈ B
be the two elements picked by the Spoiler and the Duplicator in their ith move,
1 ≤ i ≤ r.

• The Duplicator wins the run (a1, b1), . . . , (ar, br) if the mapping

ai �→ bi, 1 ≤ i ≤ r, and cAi �→ cBj , 1 ≤ j ≤ s,
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is a partial isomorphism from A to B, which means that it is an iso-
morphism between the substructure A � {a1, . . . , ar} of A generated by
{a1, . . . , ar} and the substructure B � {b1, . . . , br} of B generated by
{b1, . . . , br}. Otherwise, the Spoiler wins the run (a1, b1), . . . , (ar, br).

• The Duplicator wins the r-move Ehrenfeucht–Fräıssé game on A and B if
the Duplicator can win every run of the game, i.e., if (s)he has a winning
strategy for the Ehrenfeucht–Fräıssé game. Otherwise, the Spoiler wins
the r-move Ehrenfeucht–Fräıssé game on A and B.

• We write A ∼r B to denote that the Duplicator wins the r-move
Ehrenfeucht–Fräıssé game on A and B.

A typical run of the r-move Ehrenfeucht–Fräıssé game on A and B is
depicted in Fig. 2.1.

The next proposition follows immediately from Definition 2.3.1.

Proposition 2.3.2. ∼r is an equivalence relation on the class S of all
σ-structures.

Example 2.3.3. Let A and B be the graphs depicted in Fig. 2.2. Then

• A ∼2 B, i.e., the Duplicator wins the 2-move Ehrenfeucht–Fräıssé game
on A, B;

• A �∼3 B, i.e., the Spoiler wins the 3-move Ehrenfeucht–Fräıssé game on
A, B.

Spoiler a1 ∈ A b2 ∈ B b3 ∈ B . . . ar ∈ A
� � � . . . �

Duplicator b1 ∈ B a2 ∈ A a3 ∈ A . . . br ∈ B

Fig. 2.1. A typical run of the r-move Ehrenfeucht–Fräıssé game

A B
Fig. 2.2. A difference between the 2-move and the 3-move Ehrenfeucht–Fräıssé game
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The Duplicator can win the 2-move game by playing in such a way that
there is an edge between a1 and a2 if and only if there is an edge between
b1 and b2. In contrast, the Spoiler can win the 3-move game by picking three
elements in B with no edge between any two of them.

Note that the description of a winning strategy for the Duplicator in the
Ehrenfeucht–Fräıssé game, as presented in Definition 2.3.1, is rather informal.
The concept of a winning strategy for the Duplicator can be made precise,
however, in terms of families of partial isomorphisms with appropriate exten-
sion properties.

Definition 2.3.4. Let r be a positive integer. A winning strategy for the
Duplicator in the r-move Ehrenfeucht–Fräıssé game on A and B is a sequence
I0, I1, . . . , Ir of nonempty sets of partial isomorphisms from A to B such that

• The sequence I0, I1, . . . , Ir has the forth property: For every i < r, every
f ∈ Ii, and every a ∈ A, there is a g ∈ Ii+1 such that a ∈ dom(g) and
f ⊆ g.

• The sequence I0, I1, . . . , Ir has the back property: For every i < r, every
f ∈ Ii, and every b ∈ B, there is a g ∈ Ii+1 such that b ∈ rng(g) and
f ⊆ g.

In effect, the forth property provides the Duplicator with a good move
when the Spoiler picks an element of A, while the back property provides the
Duplicator with a good move when the Spoiler picks an element of B.

The key feature of Ehrenfeucht–Fräıssé games is that they capture the com-
binatorial content of first-order quantification; for this reason, Ehrenfeucht–
Fräıssé games can be used to characterize definability in first-order logic on
an arbitrary class of σ-structures. To describe the precise connection between
first-order logic and Ehrenfeucht–Fräıssé games, we need to bring into the
picture a well-known concept from mathematical logic.

Definition 2.3.5. Let ϕ be a first-order formula over a vocabulary σ. The
quantifier rank of ϕ, denoted by qr(ϕ), is the depth of quantifier nesting in ϕ.
More formally, qr(ϕ) is defined by the following induction on the construction
of ϕ:

• If ϕ is atomic, then qr(ϕ) = 0.
• If ϕ is of the form ¬ψ, then qr(ϕ) = qr(ψ).
• If ϕ is of the form ψ1 ∧ ψ2 or of the form ψ1 ∨ ψ2, then qr(ϕ) =

max{qr(ψ1), qr(ψ2)}.
• If ϕ is of the form ∃xψ or of the form ∀xψ, then qr(ϕ) = qr(ψ) + 1.

Note that if a first-order formula is in prenex normal form, then its quanti-
fier rank is equal to the number of the quantifiers in its prefix. For instance, if
ϕ is (∀x)(∀y)(∃z)θ, where θ is quantifier-free, then qr(ϕ) = 3. In contrast, if ϕ
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is (∃x)E(x, x)∨(∃y)(∀z)¬E(y, z), then qr(ϕ) = 2. Note also that if qr(ϕ) = r,
then for every r′ > r there is a first-order formula ψ such that qr(ψ) = r′ and
ϕ is logically equivalent to ψ.

Definition 2.3.6. Let r be a positive integer, and let A and B be two
σ-structures. We write A ≡r B to denote that A and B satisfy the same
first-order sentences of quantifier rank r.

Proposition 2.3.7. ≡r is an equivalence relation on the class S of all
σ-structures.

Note that the equivalence relation ≡r is defined using purely logical con-
cepts. The main technical result of this section asserts that ≡r coincides with
the equivalence relation ∼r, which was defined using purely combinatorial
concepts.

Theorem 2.3.8. [19, 27] Let r be a positive integer, and let A and B be two
σ-structures. Then the following statements are equivalent:

1. A ≡r B, i.e., A and B satisfy the same first-order sentences of quantifier
rank r.

2. A ∼r B, i.e., the Duplicator wins the r-move Ehrenfeucht–Fräıssé game
on A and B.

Moreover, the following are true:

• ≡r has finitely many equivalence classes.
• Each ≡r-equivalence class is definable by a first-order sentence of quanti-

fier rank r.

Example 2.3.9. Before embarking on the proof of Theorem 2.3.8, let us briefly
revisit Example 2.3.3. As seen in that example, the Spoiler wins the 3-move
Ehrenfeucht–Fräıssé game on the structures A and B shown in Fig. 2.2. There-
fore, Theorem 2.3.8 tells that there is a first-order sentence of quantifier rank
3 that is satisfied by one of the two structures, but not by the other. Indeed,
if ϕ is the sentence

∃x∃y∃z(x �= y ∧ x �= z ∧ y �= z ∧ ¬E(x, y) ∧ ¬E(x, z) ∧ ¬E(y, z)),

then B |= ϕ, but A �|= ϕ. Note also that this sentence yields a strategy for the
Spoiler to win the 3-move Ehrenfeucht–Fräıssé game on A and B: the Spoiler
picks three elements b1, b2, b3 from B such that B, b1, b2, b3 |= (x �= y ∧ x �= z
∧ y �= z ∧ ¬E(x, y) ∧ ¬E(x, z) ∧ ¬E(y, z)). Another sentence witnessing that
A �≡3 B is the sentence

(∀x)(∀y)(∃z)(x �= y ∧ ¬E(x, y) → E(x, z) ∧ E(y, z)),
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which is true on A, but is false on B. In turn, this sentence yields another
strategy for the Spoiler to win the 3-move Ehrenfeucht–Fräıssé game on A:

Spoiler b1 ∈ B b2 ∈ B a3 ∈ A
� � �

Duplicator a1 ∈ A a2 ∈ A b3 ∈ B.

The Spoiler first picks two elements b1, b2 from B such that B, b1, b2 |= x �=
y ∧¬E(x, y)∧∀z¬(E(x, z)∧E(y, z)). After the Duplicator has picked elements
a1, a2 from A, the Spoiler picks an element a3 from A such that A, a1, a2, a3 |=
x �= y ∧ ¬E(x, y) → E(x, z) ∧ E(y, z); the Duplicator is unable to respond to
this move in such a way that a partial isomorphism is maintained.

We now proceed with the proof of Theorem 2.3.8. One part of this theorem
has a relatively straightforward proof.

Theorem 2.3.10. Let r be a positive integer. If A and B are two σ-structures
such that the Duplicator wins the r-move Ehrenfeucht–Fräıssé game on A and
B, then every first-order sentence of quantifier rank r that is true on A is also
true on B. Consequently, if A ∼r B, then A ≡r B.

Proof. We proceed by induction on the quantifier rank of formulas. Assume
that the result holds for all formulas of quantifier rank r over an arbitrary
vocabulary. We have to show that if ϕ is a formula of quantifier rank r + 1
and A, B are two σ-structures such that A ∼r+1 B and A |= ϕ, then B |= ϕ.
The interesting cases are the ones in which ϕ is of the form ∃xψ or of the
form ∀xψ.

Assume that ϕ is of the form ∃xψ, which implies that qr(ψ) = r. We have
to show that B |= ∃xψ. Since A |= ϕ, there is an element a ∈ A such that
A, a |= ψ. Let c be a new constant symbol and let ψ[x/c] be the first-order
sentence obtained from ψ by replacing every free occurrence of the variable
x by c. Clearly, ψ[x/c] is a sentence of quantifier rank r over the vocabulary
σ ∪ {c}. Now view the above element a ∈ A as the first move of the Spoiler
in a run of the (r + 1)-move Ehrenfeucht–Fräıssé game on A and B. Let
b ∈ B be the response of the Duplicator in this game played according
to the Duplicator’s winning strategy. Therefore, the Duplicator wins the
r-move Ehrenfeucht–Fräıssé game on (A, a) and (B, b) viewed as structures
over the vocabulary σ ∪ {c} (and thus, a and b are distinguished elements
interpreting the constant c). Moreover, (A, a) |= ψ[x/c], so the induction
hypothesis implies that (B, b) |= ψ[x/c]), which, in turn, implies that
B |= ∃xψ.

Next, assume that ϕ is of the form ∀xψ, which again implies that
qr(ψ) = r. We have to show that B |= ∀xψ. Let b be an arbitrary element of B.
View this element as the first move of the Spoiler in a run of the (r+ 1)-move
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Ehrenfeucht–Fräıssé game on A and B. Let a ∈ A be the response of the
Duplicator in this game played according to the Duplicator’s winning strat-
egy. Therefore, the Duplicator wins the r-move Ehrenfeucht–Fräıssé game on
(A, a) and (B, b) viewed as structures over the vocabulary σ ∪ {c}, where, as
in the previous case, c is a new constant symbol. Since A |= ∀xψ, we have
that (A, a) |= ψ[x/c]. Consequently, the induction hypothesis implies that
(B, b) |= ψ[x/c]. �

To prove the remaining parts of Theorem 2.3.8, we need to first introduce
the concept of an (m, r)-type, 0 ≤ m ≤ r, and establish some basic properties
of this concept. The definition of an (m, r)-type is by backward induction on
m.

Definition 2.3.11. Assume that σ is a vocabulary, r is a positive integer, and
x1, . . . , xr are variables of first-order logic.

• An (r, r)-type is a conjunction of atomic or negated atomic formulas over
the vocabulary σ such that every variable occurring in this conjunction is
one of the variables x1, . . . , xr and, for every atomic formula θ over σ with
variables among x1, . . . , xr, either θ or ¬θ occurs as a conjunct.

• Assume that the concept of an (m + 1, r)-type has been defined, where
0 ≤ m ≤ r − 1. An (m, r)-type is an expression of the form

∧
{∃xm+1ϕ : ϕ is an (m + 1, r)-type in S}∧

∧
{∀xm+1¬ϕ : ϕ is an (m + 1, r)-type not in S},

where S is a subset of the set of all (m + 1, r)-types.

Lemma 2.3.12. Let σ be a vocabulary, r a positive integer, and m an integer
such that 0 ≤ m ≤ r.

• Every (m, r)-type is a first-order formula over the vocabulary σ such that
its free variables are among x1, . . . , xm and its quantifier rank is r −m.

• There are only finitely many distinct (m, r)-types.
• For every σ-structure A and every sequence a1, . . . , am of elements of A,

there is exactly one (m, r)-type ϕ such that A, a1, . . . , am |= ϕ.

Proof. We use backward induction on m. Since σ consists of finitely many
relation and constant symbols, there are finitely many atomic and negated
atomic formulas over σ with variables among x1, . . . , xr. It follows that every
(r, r)-type is a finite conjunction of such formulas and, thus, is a first-order
formula of quantifier rank 0. Moreover, every sequence a1, . . . , am of elements
from the universe of a structure A satisfies a unique (r, r)-type, namely the
conjunction of all atomic and negated atomic formulas over σ that are satisfied
by this tuple.

Assume that the properties of the lemma hold for (m + 1, r)-types. In
particular, the set of all (m+1, r)-types is finite, and hence it has finitely many
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subsets, which implies that there are finitely many (m, r)-types. Moreover, the
defining expression of an (m, r)-type is a first-order formula of quantifier rank
r − m, since each (m + 1, r)-type is a first-order formula of quantifier rank
r−(m+1) = r−m−1. Finally, assume that A is a σ-structure and a1, . . . , am
is a sequence of elements from A. Let S∗ be the set of all (m + 1, r)-types ϕ
such that A, a1, . . . , am |= ∃xm+1ϕ. Then A, a1, . . . , am satisfies the (m, r)-
type determined by S∗, i.e., the formula

∧
{∃xm+1ϕ : ϕ ∈ S∗} ∧

∧
{∀xm+1¬ϕ : ϕ �∈ S∗},

where ϕ ranges over all (m, r)-types. Moreover, if A, a1, . . . , am satisfies some
other (m, r)-type determined by a set S, then it is easy to see that S = S∗,
and so A, a1, . . . , am satisfies a unique (m, r)-type. �

Definition 2.3.13. Let σ be a vocabulary, r a positive integer, m an integer
such that 0 ≤ m ≤ r, A a σ-structure, and a1, . . . , am a sequence of elements
from the universe of A.

We write ϕA,a1,...,am
r to denote the unique (m, r)-type satisfied by

A, a1, . . . , am. In particular, when m = 0, we write ϕA
r to denote the unique

(0, r)-type satisfied by A.

According to Lemma 2.3.12, each expression ϕA,a1,...,am
r is a first-order

formula of quantifier rank r − m with free variables among x1, . . . , xm. In
particular, each ϕA

r is a first-order sentence of quantifier rank r. It should
be pointed out that the assumption that the vocabulary σ consists of finitely
many relation and constant symbols was critical in showing that each (m, r)-
type is a first-order formula and also that, for each m and each r with 0 ≤
m ≤ r, there are finitely many distinct (m, r)-types. We are now ready to
complete the proof of Theorem 2.3.8 and also to establish that ϕA

r defines the
≡r-equivalence class of A.

Theorem 2.3.14. Let r be a positive integer, let A and B be two σ-structures,
and let ϕA

r be the unique (0, r)-type satisfied by A. Then the following state-
ments are equivalent:

1. A ≡r B, i.e., A and B satisfy the same first-order sentences of quantifier
rank r.

2. B |= ϕA
r .

3. A ∼r B, i.e., the Duplicator wins the r-move Ehrenfeucht–Fräıssé game
on A and B.

Proof. The implication (1) ⇒ (2) follows from the definitions and the fact that
ϕA
r is satisfied by A and has quantifier rank r. The implication (3) ⇒ (1)

was established in Theorem 2.3.10. Consequently, it remains to prove the
implication (2) ⇒ (3).

Assume that B |= ϕA
r . We describe a winning strategy for the Duplicator

in the r-move Ehrenfeucht–Fräıssé game on A and B. The key property of the
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Duplicator’s strategy is that, for every run of the game and for every integer
m with 0 ≤ m ≤ r, if a1, . . . , am and b1, . . . , bm are the elements of A and B
played in the first m moves of that run, then A, a1, . . . , am and B, b1, . . . , bm
satisfy the same (m, r)-type.

Assume first that the Spoiler begins by playing an element a1 from A.
Let ϕA,a1

r be the unique (1, r)-type satisfied by A, a1. Hence, the sentence
∃x1ϕ

A,a1
r is a conjunct of ϕA

r , which implies that B |= ∃x1ϕ
A,a1
r . Let b1 be

an element of B such that B, b1 |= ϕA,a1
r . This element b1 is the Duplicator’s

response to the Spoiler’s first move. Assume then that the Spoiler begins by
playing an element b1 from B. Let ϕB,b1

r be the unique (1, r)-type satisfied
by B, b1. We claim that A |= ∃x1ϕ

B,b1
r . Otherwise, we would have A |=

∀x1¬ϕB,b1
r , which implies that ∀x1¬ϕB,b1

r is a conjunct of ϕA
r . Consequently,

B |= ∀x1¬ϕB,b1
r , which contradicts the fact that B, b1 |= ϕB,b1

r .
By continuing to play in this way, the Duplicator ensures that at the end of

the run the sequences a1, . . . , ar and b1, . . . , br are such that A, a1, . . . , ar and
A, b1, . . . , br satisfy the same (r, r)-type, i.e., the same atomic and negated
atomic formulas. This implies that the mapping ai �→ bi, 1 ≤ i ≤ r, is a
partial isomorphism. �

The first application of the preceding results is a characterization of first-
order definability on arbitrary classes of structures.

Theorem 2.3.15. Let σ be a vocabulary, C a class of σ-structures, and Q a
Boolean query on C. Then the following statements are equivalent:

1. Q is first-order definable on C.
2. There is a positive integer r such that, for every structure A ∈ C and

every structure B ∈ C, if Q(A) = 1 and the Duplicator wins the r-move
Ehrenfeucht–Fräıssé game on A and B, then Q(B) = 1.

Proof. The implication (1) ⇒ (2) is an immediate consequence of Theorem
2.3.10. For the other direction, assume that such a positive integer r exists.
Let S be the set of all (0, r)-types of structures A in C such that Q(A) = 1.
Lemma 2.3.12 implies that S is a finite set, and hence the disjunction

∨
{ϕA

r : A ∈ C and Q(A) = 1}

is a first-order sentence, which we denote by ϕ. We now claim that ϕ defines
the query Q on C. If B is a structure in C such that Q(B) = 1, then its
(0, r)-type ϕB

r is one of the disjuncts of ϕ, and so B |= ϕ. Conversely, if B is
a structure in C such that B |= ϕ, then there is a structure A in C such that
Q(A) = 1 and B |= ϕA

r . Theorem 2.3.14 implies that the Duplicator wins the
r-move Ehrenfeucht–Fräıssé game on A and B, and hence Q(B) = 1. �

Theorem 2.3.15 gives rise to a combinatorial method for studying first-
order definability and obtaining lower bounds on the expressive power of first-
order logic on arbitrary classes of structures.
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Method 2.3.16 The Method of Ehrenfeucht–Fräıssé Games for FO.
Let σ be a vocabulary, C a class of σ-structures, and Q a Boolean query on C.

Soundness. To show that Q is not first-order definable on C, it suffices to
show that for every positive integer r there are structures Ar and Br in
C such that
• Q(Ar) = 1 and Q(Br) = 0;
• the Duplicator wins the r-move Ehrenfeucht–Fräıssé game on A and B.

Completeness. This method is also complete; that is, if Q is not first-order
definable on C, then for every positive integer r such structures Ar and
Br exist.

Note that the soundness of the method of Ehrenfeucht–Fräıssé games fol-
lows from Theorem 2.3.10, which is the easier part of establishing that the
two equivalence relations ∼r and ≡r coincide. In contrast, the proof of the
completeness of the method requires Theorem 2.3.14. We now illustrate this
method with two easy applications.

Proposition 2.3.17. The Even Cardinality query is not first-order defin-
able on the class of all finite graphs.

Proof. For every n ≥ 1, let Kn be the totally disconnected graph with n nodes
(Fig. 2.3). It is obvious that, for every r ≥ 1, every m ≥ r, and every n ≥ r, the
Duplicator wins the r-move Ehrenfeucht–Fräıssé game on Km and Kn. Thus,
we can apply the method of Ehrenfeucht–Fräıssé games using the structures
Km with m ≥ r an even number and Kn with n ≥ r an odd number. �

KnKm

Fig. 2.3. Even Cardinality is not first-order definable on finite graphs
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Proposition 2.3.18. The Eulerian query is not first-order definable on the
class of all finite graphs.

Proof. By definition, a graph is Eulerian if there is a closed walk that traverses
each edge exactly once. Euler showed that this property holds if and only if
every node has even degree, i.e., an even number of neighbors. For every n ≥ 1,
let An be the graph depicted in Fig. 2.4. Clearly, An is Eulerian if and only
if n is an even number. Moreover, for every n ≥ r, the Duplicator wins the
r-move Ehrenfeucht–Fräıssé game on An and An+1. Thus, we can apply the
method of Ehrenfeucht–Fräıssé games using the structures A2n and A2n+1

with 2n ≥ r. �

As seen earlier, the method of Ehrenfeucht–Fräıssé games is complete,
which implies that if a query Q is not first-order definable on a class C of
structures, then in principle this can be established using the method of
Ehrenfeucht–Fräıssé games. In practice, however, the following technical diffi-
culties may arise when one attempts to apply this method to concrete queries:

• How does one find, for every r ≥ 1, structures Ar and Br in C such that
Q(Ar) = 1, Q(Br) = 0, and the Duplicator wins the r-move Ehrenfeucht–
Fräıssé game on Ar and Br?

• After such candidate structures Ar and Br have been identified, how does
one show rigorously that Ar ∼r Br?

As a general rule, both these tasks can be challenging. Nonetheless, they
can be eased by pursuing the following two approaches.

• Whenever possible, analyze the ∼r-equivalence classes, r ≥ 1, of the struc-
tures in C and obtain explicit descriptions of them.

• Find general sufficient conditions for the Duplicator to win the r-move
Ehrenfeucht–Fräıssé game, and thus build a “library” of winning strategies
for the Duplicator in this game.

The class L of all finite linear orders provides an interesting, albeit rather
rare, case in which it is possible to analyze the ∼r-equivalence classes, r ≥ 1.

c2c1 cn

b

a

An

Fig. 2.4. Eulerian is not first-order definable on finite graphs
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L6 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6

L7 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7

L8 : 1 ≤ 2 ≤ 3 ≤ 4 ≤ 5 ≤ 6 ≤ 7 ≤ 8

Fig. 2.5. L6 �∼3 L7, but L7 ∼3 L8

Before presenting the full analysis, we give a motivating example. For every
n ≥ 1, we let Ln = ({1, . . . , n},≤) be the standard linear order on {1, . . . , n}.

Example 2.3.19. The following are true for the 3-move Ehrenfeucht–
Fräıssé game (Fig. 2.5).

• The Spoiler wins the 3-move Ehrenfeucht–Fräıssé game on L6 and L7.
• The Duplicator wins the 3-move Ehrenfeucht–Fräıssé game on L7 and L8.

The Spoiler can win the 3-move Ehrenfeucht–Fräıssé game on L6 and L7

by playing as follows. The first move of the Spoiler is element 4 in L7. In
order to avoid losing in the next move, the Duplicator has to play either
element 4 in L6 or element 3 in L6. If the Duplicator plays 4 in L6, then the
Spoiler plays element 6 in L7. At this point, the Duplicator must play either
element 5 in L6 or element 6 in L6. In the first case, the Spoiler wins the run
by playing element 5 in L7; in the second case, the Spoiler wins the run by
playing element 7 in L7. An essentially symmetric argument shows that the
Spoiler can win if the first move of the Duplicator is element 3 in L6.

In contrast, consider the 3-move Ehrenfeucht–Fräıssé game on L7 and L8,
and suppose that the Spoiler plays element 4 in L8. In this case, the Duplicator
responds by playing element 4 in L7. If the Spoiler plays element 6 in L8, then
the Duplicator plays element 6 in L7, and after this can easily maintain a
partial isomorphism no matter what the third move of the Spoiler is. Similarly,
if the second move of the Spoiler is element 7 in L8, then the second move
of the Duplicator is element 6 in L7. We leave it to the reader to fill in the
remaining cases and verify that the Duplicator wins the 3-move Ehrenfeucht–
Fräıssé game on L7 and L8.

We are now ready to describe the analysis of ∼r, r ≥ 1, on finite linear
orders and derive Example 2.3.19 as a special case.

Theorem 2.3.20. Let r, m, and n be positive integers. The following are
equivalent:

• Lm ∼r Ln.
• (m = n) or (m ≥ 2r − 1 and n ≥ 2r − 1).

Proof. (Hint) If c is an element of the linear order Ln, then L>cn denotes the
linear order with universe {d : c < d ≤ n} and, similarly, L<cn denotes the
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linear order with universe {d : 1 ≤ d < c}. It is easy to see that, for every
positive integer s, we have that Lm ∼s+1 Ln if and only if the following two
conditions hold:

1. For every a ∈ Lm, there is a b ∈ Ln such that L>am ∼s L>bn and L<am ∼s
L<bn .

2. For every b ∈ Ln, there is an a ∈ Lm such that L>am ∼s L>bn and L<am ∼s
L<bn .

The required result can then be derived from the above fact using induction
on min(m,n). �

Corollary 2.3.21. The Even Cardinality query is not first-order definable
on the class L of all finite linear orders.

Proof. Apply the method of Ehrenfeucht–Fräıssé games using the linear orders
L2m and L2m+1 with m ≥ 2r − 1. �

As indicated earlier, the class of finite linear orders provides a rather
rare example of a class of structures for which a complete analysis of the
≡r-equivalence classes, r ≥ 1, has been obtained. Over the years, however,
researchers have succeeded in identifying general sufficient conditions for the
Duplicator to win the r-move Ehrenfeucht–Fräıssé game. These conditions
give “off-the-shelf” winning strategies for the Duplicator and thus facilitate
the application of the method of Ehrenfeucht–Fräıssé games. In what follows,
we shall present such a useful and widely applicable sufficient condition dis-
covered by Fagin, Stockmeyer, and Vardi [25], who built on earlier work by
Hanf [36]. Additional useful sufficient conditions for the Duplicator to win
the Ehrenfeucht–Fräıssé game have been found by Schwentick [59], Arora and
Fagin [6], and others (see [24] for a survey). Underlying this work is Gaifman’s
Theorem [28], which, intuitively, asserts that first-order logic can express local
properties only. Although we shall not discuss or use Gaifman’s Theorem here,
we shall introduce the fundamental concept of neighborhood , which plays a
key role in both Gaifman’s work and the work on sufficient conditions for the
Duplicator to win the Ehrenfeucht–Fräıssé game.

Definition 2.3.22. Let A = (A,RA
1 , . . . , RA

m, cA1 , . . . , cAs ) be a σ-structure,
let a be an element of A, and let d be a positive integer.

• The Gaifman graph GA = (A,EA) of A is the undirected graph having
the elements of A as nodes and an edge relation EA defined as follows:
there is an edge EA(b, c) between two elements b and c of A if there is a
relation RA

i , 1 ≤ i ≤ m, and a tuple (t1, . . . , ts) ∈ RA
i such that b and c

are among t1, . . . , ts.
• The neighborhood N(a, d) of a of radius d is the set of all nodes whose

distance in the Gaifman graph GA from a or from one of the constants
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cA1 , . . . , cAs is less than d. More formally, N(a, d) is defined by the following
induction on d:

N(a, 1) = {a, cA1 , . . . , cAs }.
N(a, d + 1) = N(a, d) ∪ {c ∈ A : there is a b ∈ N(a, d) such that EA(b, c)}.

The following examples reveal that the neighborhood of an element can
vary widely.

Example 2.3.23. Let n ≥ 1 and d ≥ 2 be positive integers.

• If Ln = (Ln,≤) is a linear order with n elements, then N(a, d) = Ln, for
every a ∈ Ln.

• If Kn = (Kn, E) is a clique with n nodes, then N(a, d) = Kn, for every
a ∈ Kn.

• If Kn = (Kn, E) is a totally disconnected graph with n nodes, then
N(a, d) = {a}, for every a ∈ Kn.

• If Cn = (Cn, E) is a (directed or undirected) cycle Cn with n nodes and
d ≤ n/2, then the subgraph GCn � N(a, d) of the Gaifman graph GCn

induced by N(a, d) is an undirected path with 2d − 1 nodes having a as
its midpoint.

Definition 2.3.24. Let A = (A,RA
1 , . . . , RA

m, cA1 , . . . , cAs ) be a σ-structure,
let a be an element of A, and let d be a positive integer.

• (A, a) denotes the expansion of A obtained by augmenting it with a as a
distinguished element interpreting a new constant.

• (A, a) � N(a, d) denotes the substructure of (A, a) generated by N(a, d).
• The d-type of a is the isomorphism type of the structure (A, a) � N(a, d).

Note that the universe of (A, a) � N(a, d) is N(a, d), since N(a, d) contains
a, cA1 , . . . , cAs as members. Moreover, if B = (B,RB

1 , . . . , RB
m, cB1 , . . . , c

B
s ) is a

σ-structure and b is an element of B, then a and b have the same d-type
precisely when there is a one-to-one and onto mapping h : N(a, d) → N(b, d)
such that h(a) = b, h(cAi ) = cBi , 1 ≤ i ≤ s, and for every relation symbol Ri
of arity t, 1 ≤ i ≤ m, and every t-tuple (a1, . . . , at) from N(a, d), we have
that RA

i (a1, . . . , at) if and only if RB
i (h(a1), . . . , h(at)).

Definition 2.3.25. Assume that d is a positive integer, σ is a vocabulary, and
A and B are two σ-structures. We say that A and B are d-equivalent if for
every d-type τ they have the same number of elements of d-type τ .

Clearly, d-equivalence is an equivalence relation on the class S of all σ-
structures. The next result, due to Fagin, Stockmeyer and Vardi [25], asserts
that if d is larger than r by a sufficient amount, then d-equivalence is actually
a refinement of ≡r-equivalence.

Theorem 2.3.26. For every positive integer r and for every positive integer
d ≥ 3r−1, if A is d-equivalent to B, then A ≡r B.
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Proof. (Hint) Assume that A is d-equivalent to B, where d ≥ 3r−1. We can
show that the Duplicator wins the r-move Ehrenfeucht–Fräıssé game on A
and B by maintaining a partial isomorphism between not only the elements
of A and B played thus far, but also between neighborhoods of these points
of sufficiently large radius. Specifically, by induction on j ≤ r, it can be
shown that the Duplicator can win the r-move Ehrenfeucht–Fräıssé game via
a winning strategy that has the following property, called the j-matching
condition: If a1, . . . , aj and b1, . . . , bj are the elements of A and B played
in the first j moves of a run, then A � ∪ji=1N(ai, 3r−j) is isomorphic to
B � ∪ji=1N(bi, 3r−j) via an isomorphism that maps ai to bi, for 1 ≤ i ≤ j.

Note that the Duplicator can ensure that the 1-matching condition holds as
follows. If the Spoiler plays an element a1 in A (or an element b1 in B), then, by
d-equivalence, there is an element b1 in B (or an element a1 in A) such that a1

and b1 have the same d-type, which implies that A � N(a1, 3r−1) is isomorphic
to B � N(b1, 3r−1) via an isomorphism that maps a1 to b1. The inductive step
from j to j + 1 uses d-equivalence combined with a counting argument to the
effect that the Duplicator can always find at least one element with the same
d-type as the last element played by the Spoiler, but not contained in the
union of neighborhoods of radius 3r−(j+1) of the elements played so far. �

Theorem 2.3.26 gives rise to a new method for studying first-order defin-
ability.

Method 2.3.27 Let σ be a vocabulary, C a class of σ-structures, and Q a
Boolean query on C. To show that Q is not first-order definable on C, it suffices
to show that, for every positive integer r, there are structures Ar and Br in
C such that

• Q(Ar) = 1 and Q(Br) = 0.
• Ar is d-equivalent to Br for some d ≥ 3r.

Although, by Theorem 2.3.26, this method is sound, it is not complete.
For instance, it cannot be used to analyze first-order definability on the class
L of all finite linear orders, since, for all positive integers d, m, and n, the
linear order Lm is d-equivalent to the linear order Ln if and only if m = n. In
particular, this method cannot be used to show that Even Cardinality is
not first-order definable on finite linear orders. Nonetheless, whenever applica-
ble, Method 2.3.27 is usually technically simpler than Method 2.3.16, since it
replaces the task of proving that the Duplicator wins the r-move Ehrenfeucht–
Fräıssé game with the task of analyzing and counting d-types. Moreover, the
analysis of d-types often provides a clue for finding candidate structures Ar

and Br. In the remainder of this section, we present several applications of
Method 2.3.27 to finite model theory.

Proposition 2.3.28. The Connectivity query is not first-order definable
on finite graphs.
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Fig. 2.6. Connectivity is not first-order definable on finite graphs

Proof. For every r and every d ≥ 3r−1, let Ar be a cycle with 4d nodes and
let Br be the union of two disjoint cycles each with 2d nodes, as depicted in
Fig. 2.6. Clearly, each d-type in Ar or in Br is a path with 2d − 1 nodes.
Moreover, Ar is d-equivalent to Br, since each structure contains exactly 4d
points of this d-type. �

Proposition 2.3.29. The 2-Colorability query is not first-order definable
on finite graphs.

Proof. For every r, let d = 3r−1, and let Ar be a cycle with 6d nodes and
let Bd be the union of two disjoint cycles each with 3d nodes, as depicted in
Fig. 2.7. Clearly, Ar is 2-colorable, but Br is not, since Ar is an even cycle,
while Br contains an odd cycle. Moreover, Ar is d-equivalent to Br. �

Proposition 2.3.30. The Acyclicity query is not first-order definable on
finite graphs.

Proof. Let Ar and Br be the two structures depicted in Fig. 2.8 Clearly, Ar

is acyclic, Br contains a cycle, and Ar is d-equivalent to Br. �

Exercise 2.3.31. Show that the following queries are not first-order definable
on the class of all finite graphs:

• k-Colorability, for every fixed k ≥ 3;
• Planarity;
• Rigidity.
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Fig. 2.7. 2-Colorability is not first-order definable on finite graphs
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Fig. 2.8. Acyclicity is not first-order definable on finite graphs
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Exercise 2.3.32. Show that the Connectivity query is not first-order defin-
able on the class O of all finite ordered graphs G = (V,E,≤).

Hint. Use the analysis of ≡r-equivalence on linear orders.

2.4 Computational Complexity

This section is a brief interlude on computational complexity and a first
encounter with the connections between computational complexity and logics
on finite structures. These connections are explored in depth in Chap. 3 of
this volume.

2.4.1 Complexity Classes

In his 1993 Turing Award Lecture [37], Hartmanis described computational
complexity as “the quantitative study of solvability”. Indeed, the main goal of
computational complexity is to characterize the inherent difficulty of solvable
decision problems by placing them into classes according to the time resources
or space resources required to solve them in some model of computation, which
is usually either the (deterministic) Turing machine or the nondeterministic
Turing machine. The following major complexity classes will be of interest to
us here; their precise definitions can be found in [55].

It is well known and easy to show that the following containments hold:

L ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME.

It is also conjectured and widely believed that each of the above containments
is a proper one, but proving this remains the central open problem in the field
of computational complexity to date. It has been established, however, that
if there is an exponential gap in the amount of the resource (space or time)
used in defining two complexity classes, then one is properly contained in the
other. These results, which are known as space and time hierarchy theorems
(see [55]), imply that

L � PSPACE, P � EXPTIME, NP � NEXPTIME.

Table 2.1. Some major computational complexity classes

Class Resource bound

L Logarithmic space
P Polynomial time
NP Nondeterministic polynomial time
PSPACE Polynomial space
EXPTIME Exponential time
NEXPTIME Nondeterministic exponential time
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A possible approach to separating two complexity classes is to show that there
is a structural property possessed by one class but not by the other. Clearly,
each of the deterministic classes L, P, PSPACE, and EXPTIME is closed
under complements. In contrast, the class NP of all problems solvable by a
nondeterministic polynomial-time bounded Turing machine is not known to be
closed under complements. Thus, the question “is NP = coNP?” constitutes
another major open problem in the field of computational complexity. The
same state of affairs holds true for the class NEXPTIME.

Each of the aforementioned complexity classes contains problems that are
complete for the class, i.e., problems that embody the intrinsic computational
difficulty of the class at hand. More precisely, let C be a complexity class and
Q a decision problem. We say that Q is C-complete if Q is in C and Q is
C-hard , i.e., for every Q′ ∈ C, there is a “suitable” many–one reduction f of
Q′ to Q, so that for every input x,

x ∈ Q′ ⇐⇒ f(x) ∈ Q.

If C is the class P of all polynomial-time solvable problems, then “suitable”
means that f is computable in logarithmic space. For NP and all other
larger classes, “suitable” means that f is computable in polynomial time.
Representative natural NP-complete problems include Boolean satisfiability
(Sat), 3-Colorability, and Hamiltonian Path (see [30]). The prototyp-
ical PSPACE-complete problem is QBF, the satisfiability problem for quan-
tified Boolean formulas [63].

2.4.2 The Complexity of Logic

Vardi [67] singled out certain fundamental decision problems that arise from
the analysis of the satisfaction relation between sentences of a logic L and
finite structures.

Definition 2.4.1. [67] Let L be a logic.

• The combined complexity of L is the following decision problem: given a
finite structure A and an L-sentence ψ, does A |= ψ?

• The data complexity of L is the family of the following decision prob-
lems Qψ, one for each fixed L-sentence ψ: given a finite structure A, does
A |= ψ?

• The expression complexity of L is the family of the following decision prob-
lems QA, one for each fixed finite structure A: given an L-sentence ψ, does
A |= ψ?

The combined-complexity problem for L is also known as the model-
checking problem for L. In this problem, the input consists of both a finite
structure and an L-sentence. The data complexity and the expression com-
plexity are the restricted cases of the combined-complexity problem in which
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the L-sentence is kept fixed or the finite structure is kept fixed, respectively.
Note that the data complexity and the expression complexity are not single
decision problems, but families of decision problems. The next definition pro-
vides a way to “measure” the computational complexity of these families of
decision problems.

Definition 2.4.2. [67] Let L be a logic and C a complexity class.

• The data complexity of L is in C if for each L-sentence ψ, the decision
problem Qψ is in C.

• The data complexity of L is C-complete if it is in C and there is at least
one L-sentence ψ such that the decision problem Qψ is C-complete.

• The expression complexity of L is in C if for each finite structure A, the
decision problem QA is in C.

• The expression complexity of L is C-complete if it is in C and there is
at least one finite structure A such that the decision problem QA is C-
complete.

The next result pinpoints the data complexity, expression complexity, and
combined complexity of first-order logic.

Theorem 2.4.3. The following hold for first-order logic FO.

• The data complexity of FO is in L.
• The expression complexity of FO is PSPACE-complete
• The combined complexity of FO is PSPACE-complete.

Proof. (Hint) For simplicity, assume that ψ is a first-order sentence in prenex
normal form. Given a finite structure A, one can check whether A |= ψ by
examining each possible instantiation of quantifiers in ψ one at a time (this
requires logarithmic space), while keeping track of the number of them in
binary with the aid of a counter. Since there are polynomially many such
instantiations, only logarithmically many cells are used to keep track of the
counter, so the entire computation requires O(log(|A|) space, where |A| is the
cardinality of the universe of A.

If the sentence ψ is part of the input, then the above computation can
be carried out in a space bounded by a polynomial in |A|, so the combined
complexity of FO is in PSPACE. Finally, the expression complexity of FO is
PSPACE-complete (and hence the combined complexity of FO is PSPACE-
complete as well) because, for every fixed finite structure A with at least
two distinct elements, the satisfiability problem QBF for quantified Boolean
formulas is easily reducible to the expression complexity problem QA. �

Theorem 2.4.3 shows that an exponential gap exists between the data
complexity of first-order logic and the expression complexity of first-order
logic, and that the expression complexity of first-order logic is as hard as
the combined complexity of first-order logic. As pointed out by Vardi [67],
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this phenomenon is also encountered in several other logics studied in finite
model theory.

The r-move Ehrenfeucht–Fräıssé game gives rise to the natural decision
problem of determining the winner of this game. In fact, there are two versions
of this problem, one in which the number of moves is fixed and one in which
the number of moves is part of the input. The next two results identify the
computational complexity of these problems.

Proposition 2.4.4. Let r be a fixed positive integer. The following problem
is in L and, hence, also in P: given two finite structures A and B, does the
Duplicator win the r-move Ehrenfeucht–Fräıssé game on A and B?

Proof. By Theorem 2.3.8, for each fixed r, there are finitely many ≡r-classes
and each such class is first-order definable; moreover, the proof of Lemma
2.3.12 provides an explicit construction of the first-order formulas that define
the ≡r-equivalence classes. The conclusion now follows from the fact that, by
Theorem 2.4.3, the data complexity of FO is in L. �

Pezzoli [56] established that if the number of moves is part of the input,
then determining the winner of the r-move Ehrenfeucht–Fräıssé game is a
much harder task.

Theorem 2.4.5. The following problem is PSPACE-complete: given a posi-
tive integer r ≥ 1 and two finite structures A and B, does the Duplicator win
the r-move Ehrenfeucht–Fräıssé game on A and B?

This result is proved via a reduction from QBF that entails the construc-
tion of rather complicated combinatorial gadgets. It should be pointed out
that, unlike many other decision problems in which integers are part of the
input, here the computational complexity remains the same (the problem is
PSPACE-complete) irrespective of whether the number r of moves is given in
unary or in binary. The reason is that if r is bigger than max{|A|, |B|}, then
r can be replaced by max{|A|, |B|}; moreover, this quantity is given in unary,
since at least max{|A|, |B|} bits are needed to encode A and B.

As shown in Sect.2.3, first-order logic has severely limited expressive power
on finite graphs. In particular, none of the queries Disconnectivity, k-
Colorability, for k ≥ 2, and Hamiltonian Path is first-order definable on
the class of all finite graphs. Recall also that these queries are easily expressible
in existential second-order logic ESO, one of the two syntactically simplest
fragments of second-order logic. This increase in expressive power, however,
is accompanied by an increase in complexity.

Proposition 2.4.6. The data complexity of ESO is NP-complete.

Proof. Let Ψ be a fixed ESO-sentence (∃S1) · · · (∃Sm)ϕ(S1, . . . , Sm), where
ϕ(S1, . . . , Sm) is a first-order sentence. Given a finite structure A, one can
check that A |= Ψ by first “guessing” relations S′

1, . . . , S
′
m on A and then
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verifying that (A, S′
1, . . . , S

′
m) |= ϕ(S1, . . . , Sm). This computation can be

carried out in nondeterministic polynomial time, since the size of the relations
guessed is polynomial in |A| and the data complexity of first-order logic is in
P. Consequently, the data complexity of ESO is in NP.

Since 3-Colorability is definable by a monadic ESO-sentence and it is
an NP-complete problem, it follows that the data complexity of monadic ESO
is NP-complete; hence, the data complexity of ESO is also NP-complete. �

Vardi [67] has shown that both the expression complexity of ESO and
the combined complexity of ESO are NEXPTIME-complete; this is another
instance of the exponential-gap phenomenon between the data complexity and
the expression (and combined) complexity of a logic.

The link between the data complexity of ESO and NP turns out to be much
stronger. The exact connection is provided by the following result, which has
become known as Fagin’s Theorem and constitutes the prototypical result of
descriptive complexity.

Theorem 2.4.7. [21] The following are equivalent for a Boolean query Q on
the class F of all finite σ-structures:

• Q is in NP.
• Q is ESO-definable on F .

In other words, NP = ESO on F .

Fagin’s Theorem asserts that, in a precise sense, ESO captures NP on the
class of all finite structures and, thus, provides a logic-based and machine-
independent characterization of NP. Moreover, it makes it possible to refor-
mulate the “NP ?= coNP” question in terms of logic alone.

Corollary 2.4.8. The following statements are equivalent:

• NP is closed under complements (in other words, NP = coNP).
• ESO is closed under complements on the class F of all finite structures

(in other words, ESO[F ] = USO[F ]).
• 3-Colorability is USO-definable on the class of all finite graphs.
• Hamiltonian Path is USO-definable on the class of all finite graphs.

Proof. The result follows from Fagin’s Theorem (Theorem 2.4.7) and the NP-
completeness of 3-Colorability and Hamiltonian Path. �

2.5 Ehrenfeucht–Fräıssé Games for Existential
Second-Order Logic

In this section, we consider certain extensions of the Ehrenfeucht–
Fräıssé games that are powerful enough to characterize definability in exis-
tential second-order logic.
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Definition 2.5.1. Let s1, . . . , sk, r be positive integers, let σ be a vocabu-
lary, and let A, B be two σ-structures. The (〈s1, . . . , sk〉, r) Ehrenfeucht–
Fräıssé game on A and B is played according to the following rules. In a run
of the game:

• The Spoiler picks relations S1, . . . , Sk of arities s1, . . . , sk on A.
• The Duplicator picks relations S′

1, . . . , S
′
k of arities s1, . . . , sk on B.

• After this, the two players engage in a run of the r-move
Ehrenfeucht–Fräıssé game on the expanded structures (A, S1, . . . , Sk) and
(B, S′

1, . . . , S
′
k).

• Let (a1, b1), . . . , (ar, br) be the elements of A×B picked by the two players
in their r moves. The Duplicator wins this run if the mapping

ai �→ bi, 1 ≤ i ≤ r, and cAi �→ cBj , 1 ≤ j ≤ s,

is a partial isomorphism, that is, an isomorphism between the substructure
(A, S1, . . . , Sk) � {a1, . . . , ar} of (A, S1, . . . , Sk) generated by {a1, . . . , ar}
and the substructure (B, S′

1, . . . , S
′
k) � {b1, . . . , br} of (B, S′

1, . . . , S
′
k) gen-

erated by {b1, . . . , br}. Otherwise, the Spoiler wins the run.
• The Duplicator wins the (〈s1, . . . , sk〉, r) game on A and B if the Duplica-

tor can win every run of the game, i.e., if (s)he has a winning strategy for
this game. Otherwise, the Spoiler wins the (〈s1, . . . , sk〉, r)-Ehrenfeucht–
Fräıssé game on A and B.

Using Theorem 2.3.8 and the semantics of existential second-order logic,
it is quite straightforward to establish the following result.

Proposition 2.5.2. Let Ψ be an ESO-sentence of the form (∃P1) · · · (∃Pk)ψ,
where each Pi is a relation symbol of arity si and ψ is a first-order sentence
of quantifier rank r. If A |= Ψ and the Duplicator wins the (〈s1, . . . , sk〉, r)
Ehrenfeucht–Fräıssé game on A and B, then B |= Ψ .

In turn, this result gives rise to a combinatorial method for establishing
limitations on the expressive power of existential second-order logic on arbi-
trary classes of structures. Moreover, it is not hard to show that the method
is complete as well.

Method 2.5.3 The Method of Ehrenfeucht–Fräıssé Games for ESO.
Let σ be a vocabulary, C a class of σ-structures, and Q a Boolean query on C.

Soundness. To show that Q is not ESO-definable on C, it suffices to show
that for every sequence of positive integers s1, . . . , sk, r, there are struc-
tures A and B in C such that
• Q(A) = 1 and Q(B) = 0;
• the Duplicator wins the (〈s1, . . . , sk〉, r) Ehrenfeucht–Fräıssé game on

A and B.
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Completeness. This method is also complete, i.e., if Q is not ESO-definable
on C, then for every sequence s1, . . . , sk, r of positive integers, such struc-
tures A and B exist.

Corollary 2.4.8 and Method 2.5.3 imply that the NP ?= coNP question is
equivalent to a problem about combinatorial games.

Corollary 2.5.4. The following statements are equivalent:

• NP �= coNP;
• For every s1, . . . , sk, r, there are finite graphs G and H such that

– G is not 3-Colorable and H is 3-Colorable;
– the Duplicator wins the (〈s1, . . . , sk〉, r) Ehrenfeucht–Fräıssé game on

G and H.

Although (〈s1, . . . , sk〉, r) Ehrenfeucht–Fräıssé games yield a sound and
complete method for studying ESO-definability (and thus potentially leading
to the separation of NP from coNP), so far this approach has had rather
limited success. The reason is that formidable combinatorial difficulties arise
in implementing this method when one of the integers si is bigger than 1, that
is, when dealing with ESO-formulas in which at least one of the existentially
quantified second-order variables has an arity bigger than 1. Nonetheless,
this method has made it possible to obtain lower bounds for definability in
monadic ESO, which is the fragment of existential second-order logic that can
be analyzed using (〈1, 1, . . . , 1〉, r) Ehrenfeucht–Fräıssé games.

In certain cases, the study of ESO-definability can be made easier using
a variant of the (〈s1, . . . , sk〉, r) Ehrenfeucht–Fräıssé games that has become
known as Ajtai–Fagin games. In what follows in this section, we present the
intuition behind the Ajtai–Fagin games and highlight some of their appli-
cations to the study of definability in monadic ESO. The first observation is
that, when the method of Ehrenfeucht–Fräıssé games or one of their variants is
used to show that a particular query is not definable in a certain logic, one can
expand the scope of the game and view the selection of the structures A and B
as being part of the Duplicator’s moves. Now, one of the main difficulties with
the (〈s1, . . . , sk〉, r) Ehrenfeucht–Fräıssé games is that in effect the Duplicator
has to select the structure B before the Spoiler has picked relations S1, . . . , Sk
on A. To make the Duplicator’s task easier, Ajtai and Fagin [4] introduced a
variant of the (〈s1, . . . , sk〉, r) Ehrenfeucht–Fräıssé games in which the Dupli-
cator selects the structure B after the Spoiler has picked relations S1, . . . , Sk
on A. The next definition introduces the Ajtai–Fagin games for monadic ESO;
it can be easily extended to games for the full ESO with notational modifica-
tions only.

Definition 2.5.5. Let C be a class of σ-structures, Q a Boolean query on C,
and k, r two positive integers. The (k, r) Ajtai–Fagin game for Q on C is
played according to the following rules. In a run of the game:
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• The Duplicator picks a structure A ∈ C such that Q(A) = 1.
• The Spoiler picks k unary relations S1, . . . , Sk on A (i.e., k subsets of A).
• The Duplicator picks a structure B ∈ C such that Q(B) = 0 and then picks

k unary relations S′
1, . . . , S

′
k on B (i.e., k subsets of B).

• After this, the two players engage in a run of the r-move
Ehrenfeucht–Fräıssé game on the expanded structures (A, S1, . . . , Sk) and
(B, S′

1, . . . , S
′
k).

The winning conditions are as in Definition 2.5.1.

Note that another difference between the Ajtai–Fagin games and the
Ehrenfeucht–Fräıssé games considered earlier is that each Ajtai–Fagin game
is defined with respect to a particular Boolean query, i.e., the query itself is
one of the parameters of the game. The Ajtai–Fagin games give rise to the
following method for investigating definability in monadic ESO.

Method 2.5.6 The Method of Ajtai–Fagin Games for monadic ESO.
Let σ be a vocabulary, C a class of σ-structures, and Q a Boolean query on C.

Soundness. To show that Q is not monadic ESO-definable on C, it suffices
to show that for every k and every r, the Duplicator wins the (k, r) Ajtai–
Fagin game for Q on C.

Completeness. This method is also complete, i.e., if Q is not monadic ESO-
definable on C, then for every k and every r, the Duplicator wins the (k, r)
Ajtai–Fagin game for Q on C.

Fagin [22] showed that the Connectivity query is not monadic ESO-
definable on the class of all finite graphs, using Ehrenfeucht–Fräıssé games for
monadic ESO. Later on, Fagin, Stockmeyer and Vardi [25] obtained a much
simpler proof of this result using Ajtai–Fagin games for monadic ESO and
Theorem 2.3.26 about d-equivalence.

Theorem 2.5.7. The Connectivity query is not monadic ESO-definable
on the class of all finite graphs.

Proof. (Sketch) We shall show that, for every positive integer k and every
positive integer r, the Duplicator wins the (k, r) Ajtai–Fagin game for Con-

nectivity on the class of all finite graphs.
Suppose that k is a positive integer, A = (A,E) is an undirected cycle,

and S1, . . . , Sk are unary relations on A. For every node b ∈ A, we define the
color of b to be the Boolean vector c(b) = (c1, . . . , ck) such that if b ∈ Si,
then ci = 1; otherwise, ci = 0. Note that the number of colors depends only
on k. Moreover, it is easy to see that, for every d ≥ 1 and every a ∈ A, the
neighborhood N(a, d) of a in (A, S1, . . . , Sk) consists of 2d − 1 points whose
distance from a in A is at most d, and is completely determined by the colors
of these points (this, of course, hinges on the fact that each Si is a unary
relation on A). Consequently, the number of different d-types depends only
on k and d (and not on the cardinality |A| of A).
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Using these facts, we can show that the Duplicator wins the (k, r) Ajtai–
Fagin game for Connectivity on the class of all finite graphs by playing
according to the following strategy:

• The Duplicator picks a large enough cycle A such that, for all unary
relations S1, . . . , Sk on A, there are at least 4d points with the same d-
type in (A, S1, . . . , Sk), where d = 3r−1.

• After the Spoiler picks unary relations S1, . . . , Sk on A, there are two nodes
ap and aq in A that have the same d-type and are such that N(ap, 2d) ∩
N(aq, 2d) = ∅.

• The Duplicator constructs B = B0 ⊕B1, consisting of two disjoint cycles
B0 and B1 constructed as follows:
– The Duplicator disconnects A by “pinching” it at ap, aq.
– The Duplicator creates B0 by joining ap and aq+1 in the first compo-

nent.
– The Duplicator creates B1 by joining ap+1 and aq in the second com-

ponent.
• Finally, the Duplicator picks the same unary relations S1, . . . , Sk in B as

the ones picked by the Spoiler on A.

Note that the structures (A, S1, . . . , Sk) and (B, S1, . . . , Sk) are d-equivalent,
as it is not too hard to verify that each node in A has the same d-type as
its “clone” in B. Consequently, the Duplicator wins the r-move Ehrenfeucht–
Fräıssé game on these structures. �

Since the Disconnectivity query is monadic ESO-definable on the class
of all finite graphs, we obtain the following separation between monadic ESO
and monadic USO on finite graphs.

Corollary 2.5.8. Monadic ESO is not closed under complements on the class
of all finite graphs.

It should be pointed out that Theorem 2.5.7 and Corollary 2.5.8 do not
have any implications for the NP ?= coNP problem, because Connectivity is
a polynomial-time-computable query and monadic ESO cannot express all NP
queries. Any breakthroughs towards the separation of NP from coNP using
combinatorial games will entail proving limitations on the expressive power of
existential second-order formulas in which the existentially quantified second-
order variables have an arity bigger than one. So far, however, the successes
of combinatorial games have been essentially limited to monadic existential
second-order logic. In particular, the following test problem is open.

Problem 2.5.9. Show that there is a Boolean query Q on finite graphs such
that

• Q is in NP (and hence Q is ESO-definable);
• Q is not binary ESO-definable, i.e., Q is not definable by any ESO-sentence

(∃P1) · · · (∃Pk)ψ, where each Pi is a binary relation symbol.
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Nonetheless, combinatorial games have been successfully used to establish
limitations on the expressive power of monadic ESO over the class of finite
graphs with “built-in” predicates, such as a successor relation [16] or a total
order [59]. Such results are viewed as the first stepping stone towards analyzing
definability in binary existential second-order logic.

Theorem 2.5.10. The Connectivity query is not monadic ESO-definable
on the class of finite structures with successor, i.e., finite structures of the
form G = (V,E, Suc), where E is a binary relation on V and Suc is the graph
of a successor function on V .

Theorem 2.5.11. The Connectivity query is not monadic ESO-definable
on the class of finite ordered graphs, i.e., finite structures of the form
G = (V,E,≤), where E is a binary relation on V and ≤ is a linear
order on V .

2.6 Logics with Fixed-Point Operators

In Sect. 2.3, we used Ehrenfeucht–Fräıssé games to establish that first-order
logic has severely limited expressive power on the class G of all finite graphs; in
particular, first-order logic fails to express such basic polynomial-time com-
putable queries as Transitive Closure, Acyclicity, 2-Colorability,
Eulerian, and Planarity. Several different mechanisms can be used to
augment the syntax of first-order logic, so that the resulting logic has strictly
higher expressive power on finite structures. We have already seen that second-
order quantification is such a mechanism. In fact, Fagin’s Theorem (Theorem
2.4.7) calibrates the exact gain in expressive power that is achieved when
only existential second-order quantification in prefix form is allowed; more-
over, it implies that, unless P = NP, even the syntactically simplest frag-
ments of second-order logic can express queries that are not polynomial-time
computable.

As mentioned earlier, the limited expressive power of first-order logic on
finite graphs can be interpreted as an inability to express recursion. This real-
ization suggests that higher expressive power can also be achieved by augment-
ing the syntax of first-order logic with mechanisms that embody recursion.
Perhaps the most natural such mechanism is to use fixed points of operators
that describe recursive specifications; this approach has been used fruitfully in
many different areas of computer science, including computability theory, logic
programming, and the denotational semantics of programming languages. As
a motivating example, let us consider the factorial function f(n), n ≥ 0, which
is usually defined inductively as

∣
∣
∣
∣
f(0) = 1
f(n) = nf(n− 1).
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Alternatively, the factorial function can be defined as a fixed point of the
recursive specification

f = λn.(n = 0 → 1 � nf(n− 1)).

Observe that the building blocks of the above recursive specification are opera-
tions on functions, such as definition by cases and multiplication. Here, we are
interested in developing a formalism for specifying queries recursively. The key
idea is to describe recursive specifications using formulas of first-order logic
and then to augment the syntax of first-order logic with fixed points of such
specifications. Before making this idea precise, we need to develop the basics
of fixed-point theory.

2.6.1 Operators and Fixed Points

Let A be a set and k a positive integer. A k-ary operator on A is a mapping
Φ : P(Ak) → P(Ak), where P(Ak) is the power set of Ak (that is, the set of
all k-ary relations on the universe A of A).

A k-ary relation P is a fixed point of the operator Φ if P = Φ(P ). Thus,
every fixed point of Φ satisfies the recursive specification

(x1, . . . , xk) ∈ P ⇐⇒ (x1, . . . , xk) ∈ Φ(P ).

An operator may have no fixed points whatsoever or it may have more than
one fixed point. For instance, the unary operator Φ(P ) = P , where P is the
complement of P , has no fixed points. In contrast, let Φ be a binary operator
such that if G = (V,E) is a graph and P is a binary relation on V , then

Φ(P ) = {(a, b) : G |= E(a, b) ∨ P (a, b) ∨ (∃z)(E(a, z) ∧ P (z, b))}.

This operator may have several fixed points, since every transitive relation P
containing the edge relation is a fixed point of it.

A k-ary relation P ∗ is the least fixed point of Φ if P ∗ is a fixed point of Φ
and, for every fixed point P of Φ, we have that P ∗ ⊆ P . We write lfp(Φ) to
denote the least fixed point of Φ (if it exists). For instance, if Φ is the above
binary operator on graphs G = (V,E), then lfp(Φ) is the transitive closure of
the relation E. The property of having a least fixed point is shared by every
operator that is monotone; furthermore, the least fixed point of a monotone
operator can be obtained by iterating the operator. We now spell out these
concepts and facts in precise terms.

Definition 2.6.1. Let Φ : P(Ak) → P(Ak) be a k-ary operator on a set A.

• The finite stages Φn, n ≥ 1, of Φ are defined by the induction
∣
∣
∣
∣
Φ1 = Φ(∅)
Φn+1 = Φ(

⋃n
m=1 Φ

m).
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In general, for every ordinal α, the stage Φα of Φ is defined by the trans-
finite induction

Φα = Φ(
⋃
β<α Φ

β).

We write Φ∞ =
⋃
α Φ

α for the union of all stages of Φ.
• The operator Φ is monotone, if for every two k-ary relations P1, P2 on A

such that P1 ⊆ P2, we have that Φ(P1) ⊆ Φ(P2).

The next result, which is known as the Knaster–Tarski Theorem, describes
the fundamental properties of monotone operators.

Theorem 2.6.2. [43, 64] Let Φ be a monotone k-ary operator on a set A.

• The sequence of stages of Φ is monotone, that is, if α < β, then Φα ⊆ Φβ.
Consequently, for every ordinal α, we have that Φα+1 = Φ(Φα).

• Φ has a least fixed point lfp(Φ).
• There is an ordinal γ < |Ak|+, where |Ak|+ is the smallest cardinal greater

than the cardinal |Ak| of Ak, such that

lfp(Φ) = Φ∞ = Φγ = Φδ, for every δ > γ.

In particular, if A is a finite set, then there is an integer s ≤ |A|k such
that

lfp(Φ) = Φ∞ = Φs = Φδ, for every δ > s.

• The least fixed point of Φ is equal to the intersection of all fixed points
of Φ.

Proof. Since Φ is monotone, it is easy to show by transfinite induction that
the sequence of stages is also monotone, that is, if α < β, then Φα ⊆ Φβ . Since
each Φα is a k-ary relation on A, it has at most |Ak| elements. It follows that
there must exist an ordinal γ < |Ak|+ such that Φγ = Φγ+1. Consequently,
Φγ is a fixed point of Φ, and also Φ∞ = Φγ = Φδ, for every δ > γ. Moreover,
using the monotonicity of Φ again, it is easy to show by transfinite induction
that if P is a fixed point of Φ, then Φα ⊆ P , for every α. Consequently, Φγ

is the least fixed point lfp(Φ) of Φ, and also the intersection of all of its fixed
points. �

Definition 2.6.3. Let Φ be a monotone k-ary operator on a set A. The
closure ordinal of Φ, denoted by cl(Φ), is the smallest ordinal γ such that
Φγ =

⋃
β<γ Φ

β.
Note that if A is a finite set, then cl(Φ) is a positive integer.

Let Φ be a k-ary operator on a set A. A k-ary relation P ∗ is the greatest
fixed point of Φ if P ∗ is a fixed point of Φ and, for every fixed point P of Φ,
we have that P ⊆ P ∗. We write gfp(Φ) to denote the greatest fixed point of
Φ (if it exists). Every monotone operator has a greatest fixed point that can
be obtained via an iteration that is dual to the iteration used to obtain the
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least fixed point of the operator. Specifically, the dual stages Φα of Φ, where
α is an ordinal, are defined by the transfinite induction

∣
∣
∣
∣
Φ1 = Φ(Ak)
Φα = Φ(

⋂
β<α Φβ).

We also write Φ∞ =
⋂
α Φα for the intersection of all dual stages of Φ. If Φ is

monotone, then its greatest fixed point gfp(Φ) is equal to Φ∞ and also equal
to the union of all fixed points of Φ. Moreover, there is an ordinal γ < |Ak|+
such that

gfp(Φ) = Φ∞ = Φγ = Φδ, for every δ > γ.

The duality relationship between the least fixed point and the greatest
fixed point of a monotone k-ary operator Φ can also be seen by considering the
dual operator Φ̆ of Φ, where Φ̆(P ) = Φ(P ) and P = Ak−P is the complement
of P . If Φ is a monotone operator, then so is its dual Φ̆. Moreover, using
transfinite induction, it is easy to show that Φ̆α = Φα, for every ordinal α.
Consequently, gfp(Φ) = lfp(Φ̆). Similarly, it is easy to show that lfp(Φ) =
gfp(Φ̆).

As an example of an operator with interesting greatest fixed points, let Φ
be a binary operator such that if G = (V,E) is a graph and P is a binary
relation on V , then

Φ(P ) = {(a, b) : G |= (∀a′)(E(a, a′) → (∃b′)(E(b, b′) ∧ P (a′, b′))) ∧
(∀b′)(E(b, b′) → (∃a′)(E(a, a′) ∧ P (a′, b′)))}.

The greatest fixed point gfp(Φ) of Φ is the greatest bisimulation relation on
G = (V,E); the concept of bisimulation plays an important role in modal
logic [66] and also in the semantics of concurrent processes [53]. The same
example can also be used to illustrate the concept of the dual operator Φ̆ of
Φ, which in this case is defined by

Φ̆(P ) = {(a, b) : G |= (∃a′)(E(a, a′) ∧ (∀b′)(E(b, b′) → P (a′, b′))) ∧
(∃b′)(E(b, b′) ∧ (∀a′)(E(a, a′) → P (a′, b′)))}.

In what follows, we shall focus on operators that are definable using for-
mulas of some logical formalism. Let σ be a vocabulary, S a k-ary relation
symbol not in σ, and ϕ(x1, . . . , xk, S) a formula of some logic over the vocab-
ulary σ ∪ {S} with free variables among x1, . . . , xk. On every σ-structure A,
the formula ϕ(x1, . . . , xk, S) gives rise to a k-ary operator Φ : P(Ak) → P(Ak)
such that if P is a k-ary relation on A, then

Φ(P ) = {(a1, . . . , ak) : A |= ϕ(a1, . . . , ak, P )}.

For instance, both the operator whose least fixed point is the transitive closure
of the edge relation E of a graph G = (V,E) and the operator whose greatest
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fixed point is the greatest bisimulation relation on G = (V,E) are definable
using first-order formulas. In what follows, we shall use the terms “the least
fixed point of a formula” and “the greatest fixed point of a formula” for the
least fixed point and the greatest fixed point, respectively, of the operator
associated with the formula. Similarly, we shall use the term “the closure
ordinal of a formula” for the closure ordinal of the operator associated with
the formula, and we shall denote it by cl(ϕ).

Operators also arise from formulas with parameters . Specifically, assume
that σ is a vocabulary, S1, S2, . . . , Sm are relation symbols not in σ, and
ϕ(x1, . . . , xk, y1, . . . , yn, S1, . . . , Sm) is a formula of some logic over the vocab-
ulary σ ∪ {S1, . . . , Sm} with free variables among x1, . . . , xk, y1, . . . , yn.
Assume also that the arity of the relation symbol Si is equal to k. For every
σ-structure A, every sequence b1, . . . , bn of elements from the universe A of A,
and every sequence T1, . . . , Ti−1, Ti+1, . . . , Tm of relations on A whose arities
match those of S1, . . . , Si−1, Si+1, . . . , Sm, the formula ϕ gives rise to a k-ary
operator Φ : P(Ak) → P(Ak) such that

Φ(P ) = {a : A |= ϕ(a,b, T1, . . . , Ti−1, P, Ti+1, . . . , Tm)},

where a = (a1, . . . , ak) and b = (b1, . . . , bn). Note that operators with param-
eters can also be thought of as operators (without parameters) on structures
expanded with the given parameters.

As an example, let ϕ(x1, y1, S) be the first-order formula E(y1, x1) ∨
(∃z)(S(z) ∧ E(z, x1)), in which y1 is a parameter. If G = (V,E) is a graph
and a is a node in V , then this formula gives rise to a unary operator Φ such
that

Φ(P ) = {b : G |= E(a, b) ∨ (∃z)(P (z) ∧ E(z, b))}.

The least fixed point lfp(Φ) then consists of all nodes b in V that are reachable
from a. Similarly, let ϕ(x1, y1, S1, S2) be the first-order formula E(y1, x1) ∨
(∃z)(S1(z)∧S2(z)∧E(z, x1)), in which y1 and S2 are parameters. If G = (V,E)
is a graph, a is a node in V , and T is a subset of V , then this formula gives
rise to a unary operator Φ such that

Φ(P ) = {b : G |= E(a, b) ∨ (∃z)(P (z) ∧ T (z) ∧ E(z, b))}.

The least-fixed point lfp(Φ) then consists of all nodes b in V that are reachable
from a via a path in which every intermediate node is in T .

It is easy to see that if ϕ(x1, . . . , xk, S) is an arbitrary first-order formula
over the vocabulary σ ∪ {S}, then, for every n ≥ 1, there is a first-order
formula ϕn(x1, . . . , xk) over the vocabulary σ such that it defines the nth stage
Φn of the operator Φ associated with ϕ(x1, . . . , xk, S) on every σ-structure
A. Consequently, if ϕ(x1, . . . , xk, S) is a first-order formula such that the
associated operator Φ is monotone on every finite σ-structure, then for every
finite σ-structure A, there is an integer s such that the least fixed point lfp(Φ)
of Φ is definable by ϕs(x1, . . . , xk) on A. In general, however, this integer
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depends on A, and there may be no integer s such that ϕs(x1, . . . , xk) defines
the least fixed point lfp(Φ) of Φ on every finite σ-structure, because lfp(Φ) may
not be first-order definable. For instance, if ϕ(x, y, S) is the formula E(x, y)∨
(∃z)(E(x, z)∧S(z, y)), then the least fixed point lfp(Φ) is the transitive closure
of E; moreover, for every n ≥ 1, ϕn(x, y) is a first-order formula asserting
that there is a path of length at most n from x to y. This formula defines the
transitive closure of E on every finite graph of diameter at most n, but, as
we have seen earlier, there is no first-order formula that defines the transitive
closure of E on every finite graph.

2.6.2 Least Fixed-Point Logic

We now examine how to augment the syntax of first-order logic with least fixed
points and greatest fixed points of operators definable by logical formulas.
Since we want our operators to be monotone, it is natural to focus on formulas
that give rise to monotone operators.

Let σ be a vocabulary, C a class of σ-structures, and ϕ(x1, . . . , xk, S)
a formula of some logic over the vocabulary σ ∪ {S}, where S is a k-
ary relation symbol and the free variables of ϕ are among x1, . . . , xk.
We say that ϕ(x1, . . . , xk, S) is monotone on C if, for every structure
A ∈ C, the operator Φ associated with ϕ(x1, . . . , xk, S) is monotone. More
generally, let ϕ(x1, . . . , xk, y1, . . . , yn, S, S1, . . . , Sm) be a formula of some
logic over the vocabulary σ ∪ {S, S1, . . . , Sm}, where S is a k-ary rela-
tion symbol and the free variables of ϕ are among x1, . . . , xk, y1, . . . , yn.
We say that ϕ(x1, . . . , xk, y1, . . . , yn, S, S1, . . . , Sm) is monotone on C if,
for every structure A ∈ C, every sequence b1, . . . , bn of elements from
the universe A of A, and every sequence T1, . . . , Tm of relations on
A whose arities match those of S1, . . . , Sm, the operator Φ associated
with the formula ϕ(x1, . . . , xk, y1, . . . , yn, S, S1, . . . , Sm) and the parameters
b1 . . . , bn, T1, . . . , Tm is monotone.

So, it is tempting to consider augmenting the syntax of first-order logic
with the least fixed points and the greatest fixed points of first-order formulas
that are monotone on the class F of all finite σ-structures. Serious difficulties
arise in doing so, however. Specifically, it is known that there is no algorithm
for testing whether a given first-order formula is monotone on F [5]. Con-
sequently, if the syntax of first-order logic is augmented with the least fixed
points of first-order formulas that are monotone on F , then the resulting logic
does not have an effective syntax. One way to bypass this obstacle is to restrict
attention to positive formulas, since positivity is a syntactic property of for-
mulas that implies monotonicity and is easily checkable. More precisely, let
ϕ(S) be a first-order formula over a vocabulary containing a k-ary relation
symbol S. We say that ϕ(S) is positive in S if every occurrence of S in ϕ(S) is
within an even number of negations. Equivalently, a first-order formula ϕ(S)
is positive in S if and only if, after all occurrences of the negation symbol
in ϕ(S) are “pushed inside”, no occurrence of S is negated in the resulting
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formula. It is easy to verify that if ϕ(x1, . . . , xk, S) is positive in S and the
free variables of ϕ(x1, . . . , xk, S) are among x1, . . . , xk, then it is monotone
on the class S of all σ-structures (finite and infinite). Moreover, there is a
linear-time algorithm for testing whether a given first-order formula is posi-
tive. At this point, it is also worth recalling a classical result in mathematical
logic to the effect that if a first-order formula is monotone on the class S of
all σ-structures (finite and infinite), then it is logically equivalent to a posi-
tive first-order formula. Thus, positivity is a syntactic property of first-order
formulas that, up to logical equivalence, exhausts the semantic property of
monotonicity of first-order formulas on S.

In view of the above, we shall augment the syntax of first-order logic with
the least fixed point and the greatest fixed point of operators definable by
positive first-order formulas. However, in order to obtain a logic whose syntax
is closed under the formation rules used, we shall close the syntax under
applications of the operations of first-order logic (that is, Boolean connectives
and first-order quantification) and also under applications of least fixed points
and greatest fixed points of positive formulas, where, as with first-order logic,
a formula ϕ(S) of the extended formalism is positive in a relation symbol
S if every occurrence of S in ϕ(S) is within an even number of negations.
The resulting logic is least fixed-point logic LFP, whose precise syntax and
semantics are given in the next definition.

Definition 2.6.4. Let σ be a vocabulary and let S1, . . . , Sn, . . . be a sequence
of relation symbols such that for every m ≥ 1, this sequence contains infinitely
many relation symbols of arity m.

LFP Syntax. The collection of LFP-formulas over σ is defined inductively
as follows:
• Every atomic formula θ over σ ∪ {S1, . . . , Sn, . . .} is an LFP-formula.

The set free(θ) is the union of the set of all first-order variables occur-
ring in θ and the set of all relation symbols Si occurring in θ.

• If ϕ and ψ are LFP-formulas, then so are ¬ϕ, ϕ∧ψ, ϕ∨ψ. Moreover,
free(¬ϕ) = free(ϕ), and free(ϕ ∧ ψ) = free(ϕ ∨ ψ) = free(ϕ) ∪ free(ψ).

• If ϕ is an LFP-formula and x is a first-order variable, then ∃xϕ
and ∀xϕ are LFP-formulas. Moreover, free(∃xϕ) = free(∀xϕ) =
free(ϕ) \ {x}.

• Assume that ϕ is an LFP-formula, Si is a k-ary relation symbol in
free(ϕ) which is positive in ϕ (that is, every occurrence of Si in
ϕ is within an even number of negation symbols), x = (x1, . . . , xk)
is a k-tuple of first-order variables each of which is in free(ϕ), and
u = (u1, . . . , uk) is a k-tuple of first-order variables not occurring in
ϕ. Then the expressions [lfp Six.ϕ](u) and [gfp Six.ϕ](u) are LFP-
formulas. Moreover, free([lfp Six.ϕ](u)) = free([gfp Six.ϕ](u)) =
(free(ϕ) \ {x1, . . . , xk, Si}) ∪ {u1, . . . , uk}.
Notation. If ϕ is such that Si is the only relation symbol from
S1, . . . , Sn, . . . that occurs free in ϕ and all free first-order variables
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of ϕ are among x = (x1, . . . , xk), then we shall often write ϕ∞(u)
instead of [lfp Six.ϕ](u).

LFP Semantics. The semantics of least fixed-point logic is defined by a
straightforward induction on the construction of LFP-formulas. For
instance, the semantics of [lfp Six.ϕ](u) is the least fixed point of
the operator associated with ϕ on a σ-structure A and parameters
from A corresponding to the first-order variables and relation symbols
in free([lfp Six.ϕ](u)). Specifically, assume that ϕ is an LFP-formula
such that free(ϕ) ⊆ {x1, . . . , xk, y1, . . . , yn, S1, . . . , Sm} and Si is a k-
ary relation symbol that is positive in ϕ. Write x = (x1, . . . , xk) and
y = (y1, . . . , yn). Let A be a σ-structure, a a k-tuple from A, b an n-
tuple from A, and T1, . . . , Ti−1, Ti+1, . . . , Tm relations on A whose ari-
ties match those of the relation symbols S1, . . . , Si−1, Si+1, . . . Sm. Then
A,a |= [lfp Six.ϕ](u) if a ∈ lfp(Φ), where Φ is the k-ary operator on A
such that

Φ(P ) = {a ∈ Ak : A |= ϕ(a,b, T1, . . . , Ti−1, P, Ti+1, . . . , Tm)}.

Similarly, the semantics of [gfp Six.ϕ](u) is the greatest fixed point
of the operator associated with ϕ on a σ-structure A and parameters
from A corresponding to the first-order variables and relation symbols in
free([gfp Six.ϕ](u)).

As an example, if ϕ(x1, y1, S1, S2) is the first-order formula E(y1, x1) ∨
(∃z)(S1(z)∧S2(z)∧E(z, x1)), then for every graph G = (V,E), every node a
in V , and every subset T of V , the LFP-formula [lfp S1(x1).ϕ](u) defines the
set of nodes u reachable from a via a path in which every intermediate node
is in T .

The syntax of least fixed-point logic LFP, as presented in Definition 2.6.4,
allows arbitrary nesting of least fixed points and greatest fixed points, as well
as interleaving of least and greatest fixed points with the operations of first-
order logic. Although the full syntax of LFP will be used in other chapters in
this volume, in the remainder of this chapter we shall focus on LFP1, which
is one of the syntactically simplest and most well-studied fragments of LFP.
Informally, LFP1 is the extension of first-order logic obtained by augmenting
the syntax of first-order logic with the least fixed points of positive formulas
(without parameters) and then closing under conjunctions, disjunctions, and
existential and universal first-order quantification. The precise definition of
LFP1 follows.

Definition 2.6.5. Let σ be a vocabulary. The collection of LFP1-formulas
over σ is defined inductively as follows:

• Every first-order formula over σ is an LFP1-formula over σ.
• If k is a positive integer, S is a k-ary relation symbol not in σ,

ϕ(x1, . . . , xk, S) is a first-order formula over the vocabulary σ ∪ {S} that



2.6 Logics with Fixed-Point Operators 67

is positive in S, and u1, . . . , uk are first-order variables, then the expres-
sion [lfp Sx.ϕ](u) is an LFP1-formula, where x = (x1, . . . , xk) and
u = (u1, . . . , uk). Since ϕ(x1, . . . , xk, S) contains no parameters, we shall
use the expression ϕ∞(u1 . . . , uk) to denote the formula [lfp Sx.ϕ](u) in
what follows.

• If φ and ψ are LFP1-formulas over σ, then φ ∧ ψ and φ ∨ ψ are LFP1-
formulas over σ.

• If ψ is an LFP1-formula over σ and x is a first-order variable, then ∃xψ
and ∀xψ are LFP1-formulas over σ.

Since every LFP1-formula is an LFP-formula, the semantics of LFP1 is inher-
ited from the semantics of LFP.

The study of LFP1-definable relations on fixed infinite structures is the
focus of Moschovakis’s monograph Elementary Induction on Abstract Struc-
tures [54], where they are called inductive relations. It should also be pointed
out that in Immerman’s book Descriptive Complexity [40], LFP is denoted by
FO(LFP) (the closure of FO under least fixed points) and LFP1 is denoted
by LFP(FO) (least fixed points of first-order formulas).

Note that LFP1-formulas are closed under the positive operations of first-
order logic, but they are not closed under negation. Consequently, for every
class C of σ-structures, it is an interesting problem to determine whether or not
the collection of LFP1-definable queries on C is closed under complements. In
what follows, we shall explore the expressive power of LFP1 on the class F of
all finite σ-structures and we shall also study the complementation problem
for LFP1-definable queries on F . We begin by presenting several examples
that illustrate the expressive power of LFP1 on finite structures.

Example 2.6.6. Transitive Closure and Connectivity. Let ϕ(x, y, S) be
the existential and positive in S first-order formula

E(x, y) ∨ (∃z)(E(x, z) ∧ S(z, y)).

As seen earlier, ϕ∞(x, y) defines the Transitive Closure query TC on the
class of all graphs G = (V,E). Thus, TC is an example of a query that is
LFP1-definable, but not FO-definable. Note that for every graph G = (V,E)
(finite or infinite), we have that cl(ϕ) ≤ ω.

Observe that the LFP1-formula (∀x)(∀y)ϕ∞(x, y) defines the Connec-

tivity query CN on the class of all graphs; this gives another example of a
query that is LFP1-definable, but not FO-definable.

If ψ(x, y, S) is the existential and positive in S first-order formula

E(x, y) ∨ (∃z)(S(x, z) ∧ S(z, y)),

then ψ∞(x, y) is an LFP1-formula that also defines the Transitive Closure

query TC on the class of all graphs. Although ϕ(x, y, S) and ψ(x, y, S) have
the same least fixed points, their stages behave differently. Specifically, for
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every n ≥ 1, the nth stage ϕn(x, y) defines all pairs of nodes that are connected
via a path of length at most n, while the nth stage ψn(x, y) defines all pairs
of nodes that are connected via a path of length at most 2n. Thus, on a finite
structure A, we have that cl(ϕ) ≤ |A|, while cl(ψ) ≤ log(|A|).

Example 2.6.7. Path Systems. Let σ be a vocabulary consisting of a unary
relation symbol and a ternary relation symbol. Thus, a σ-structure is a struc-
ture of the form S = (F,A,R), where A is a subset of F and R is a ternary
relation on F . Such structures can be thought of as encoding proof systems in
which F is a set of formulas, A is a set of axioms , and R is a ternary rule of
inference, such as modus ponens or resolution (that is, R(f, g, h) means that
f can be derived from g and h using the rule R). In this framework, a formula
f ∈ F is a theorem of S if either f is one of the axioms in A or it can be
derived from other previously derived theorems g and h of S using the rule of
inference R.

The following unary query, called Path System, arises naturally now:
given a finite σ-structure S = (F,A,R) and a formula f ∈ F , is f a theorem
of S? The computational complexity of this query was investigated by Cook
[13], who showed that it is P-complete under logarithmic space reductions.
In fact, this was the first problem shown to be complete for polynomial-time
computability, and its discovery gave rise to the theory of P-completeness
(see [32]).

Using Ehrenfeucht–Fräıssé games, it can be proved that Path Systems

is not FO-definable. It is easy to see, however, that Path Systems is LFP1-
definable. Indeed, if ϕ(x, T ) is the existential and positive in T first-order
formula

A(x) ∨ (∃y)(∃z)(T (y) ∧ T (z) ∧R(x, y, z)),

then Path Systems is definable by the least fixed point ϕ∞(x) of ϕ(x, T ).

Example 2.6.8. Acyclicity. Let ψ(x, S) be the universal and positive in S
first-order formula

(∀y)(E(y, x) → S(y)).

Let G = (V,E) be a directed graph. Clearly, the first stage ψ1(x) defines the
set of all nodes x of in-degree equal to 0. Similarly, the second stage ψ2(x)
defines the set of all nodes x that either have an in-degree equal to 0 or have
the property that if y is a node such that E(y, x), then y has an in-degree
equal to 0. By continuing this analysis for all stages ψn(x), n ≥ 1, it can be
seen that, on every finite directed graph G = (V,E), the least fixed point
ψ∞(x) defines the set of all nodes in V such that “no path down from x leads
to a cycle”, that is, the set of all nodes x such that there is no sequence of
nodes y1, . . . , ym such that E(y1, x), E(y2, y1), . . ., E(ym, ym−1) and such that
ym is a node on a cycle of G. It follows that Acyclicity is an LFP1-definable
query, since it is definable by the LFP1-formula (∀x)ψ∞(x).

Although our main focus is on finite structures, it is worth pointing out
that on every directed graph G = (V,E) (finite or infinite), the least fixed
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point ψ∞(x) of ψ(x, S) defines the well-founded part of E, that is the set of
all nodes x in V such that there is no infinite descending E-chain E(y1, x),
E(ym+1, ym), m ≥ 1. For finite directed graphs, of course, the well-founded
part of E is the set of all nodes x such that no path down from x leads to
a cycle. It should also be pointed out that the closure ordinal of the formula
ψ(x, S) can be arbitrarily large. Indeed, if G = (V,E) is a well-ordering of
rank α, then cl(ψ) = α.

Example 2.6.9. Geography. Every finite directed graph G = (V,E) gives
rise to a two-person game played according to the following rules: Player I
and Player II take turns to pick nodes in V ; if a is the last node picked, then
the player whose turn is next must pick a node b such that E(a, b), or else
this player loses. This abstracts a game played between two children in which
they take turns to write down the name of a city whose first letter is the same
as the last letter of the city written down in the previous step of the game.

Consider now the following unary query, called Geography: given a finite
directed graph G = (V,E) and a node v in V , is v a winning position for Player
I? It is well known that this query is P-complete (see [32]); moreover, using
Ehrenfeucht–Fräıssé games, it can be shown that it is not FO-definable. It is
easy to see, however, that Geography is LFP1-definable. Indeed, if ϕ(x, S)
is the universal-existential and positive in S first-order formula

(∀y)¬E(x, y) ∨ (∀y)(E(x, y) → (∃z)(E(y, z) ∧ S(z))),

then on every directed graph G = (V,E), the least fixed point ϕ∞(x) of
ϕ(x, S) defines the set of all winning positions for Player I.

As a by-product of Theorem 2.6.2 and Examples 2.6.7 and 2.6.9, we can
determine the data complexity of LFP and of LFP1.

Proposition 2.6.10. The data complexity of LFP is P-complete; the data
complexity of LFP1 is P-complete as well.

Proof. (Sketch) Given a finite σ-structure, the least fixed points and the great-
est fixed points of LFP-formulas can be evaluated by iterating the stages of
the associated operator a polynomial number of times in the size of the given
structure. Moreover, each step in the iteration amounts to evaluating a first-
order formula on the structure obtained by expanding the given σ-structure
with the current stage of the operator. Thus, each step in the iteration can
be carried out in a time bounded by a polynomial in the size of the given
σ-structure, since by Theorem 2.4.3, the data complexity of FO is in P. It fol-
lows that the data complexity of LFP (and, a fortiori, of LFP1) is in P. Since
LFP1 can express P-complete queries, such as Path Systems and Geogra-

phy, it follows that the data complexity of LFP1 (and, a fortiori, of LFP) is
P-complete. �

It is also known that the expression complexity and the combined com-
plexity of LFP and of LFP1 are EXPTIME-complete [67]; this is yet another
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instance of the exponential-gap phenomenon between the data complexity and
the expression (and combined) complexity of a logic.

Let σ be a vocabulary containing at least one relation symbol of arity 2
or higher, and let F be the class of all finite σ-structures. Although LFP can
express P-complete queries on F , it cannot express every polynomial-time-
computable query on F . Indeed, in the next section we shall show that
LFP cannot express counting queries, such as Even Cardinality. Thus,
the following proper containments hold on F :

FO(F) ⊂ LFP(F) ⊂ P.

Immerman [38, 39] and Vardi [67], however, showed that LFP can express all
polynomial-time-computable queries on classes of ordered finite structures,
that is, on classes of finite structures in which one of the relations is a linear
order on the universe of the structure.

Theorem 2.6.11. [38, 39, 67] . Let C be a class of ordered finite structures.
The following are equivalent for a query Q on C.

• Q is polynomial-time computable.
• Q is LFP-definable on C.

In other words, P(C) = LFP(C).

So far, we have focused on recursive specifications of single queries. In many
areas of computer science, however, it is quite common to specify objects recur-
sively using mutual recursion, that is, the object of interest is defined together
with several other auxiliary objects via a simultaneous recursive specification.
In what follows, we formalize the mechanism of mutual recursion for queries
and explore its basic properties.

Definition 2.6.12. Let A be a set.

• A system of operators on a A is a finite sequence (Φ1, . . . , Φm) of mappings

Φi : P(Ak1)× · · · × P(Akm) → P(Aki), 1 ≤ i ≤ m.

• A sequence (P1, . . . , Pm) of relations on A is a fixed point of the system
(Φ1, . . . , Φm) if Pi ⊆ Aki , for 1 ≤ i ≤ m, and (Φ1(P1), . . . , Φm(Pm)) =
(P1, . . . , Pm).

• A sequence (P1, . . . , Pm) of relations on A is the least fixed point of the
system (Φ1, . . . , Φm) if it is a fixed point of (Φ1, . . . , Φm) and, for every fixed
point (P ′

1, . . . , P
′
m) of (Φ1, . . . , Φm), we have that Pi ⊆ P ′

i , for 1 ≤ i ≤ m.
We write lfp(Φ1, . . . , Φm) to denote the least fixed point of (Φ1, . . . , Φm),
if it exists.

• A system (Φ1, . . . , Φm) is monotone if, for every two sequences
(P1, . . . , Pm), (P ′

1, . . . , P
′
m) of relations on A such that Pi ⊆ P ′

i ⊆ Aki ,
1 ≤ i ≤ m, we have that Φi(P1, . . . , Pm) ⊆ Φi(P ′

1, . . . , P
′
m), for 1 ≤ i ≤ m.
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• The (finite) stages (Φn1 , . . . , Φ
n
m), n ≥ 1, of the system (Φ1, . . . , Φm) are

defined by the following simultaneous induction:
∣
∣
∣
∣
Φ1
i = Φi(∅, . . . , ∅), 1 ≤ i ≤ m

Φn+1
i = Φi(Φn1 , . . . , Φnm), 1 ≤ i ≤ m.

In general, for every ordinal α, the stage (Φα1 , . . . , Φ
α
m) is defined by the

simultaneous transfinite induction

Φαi = Φi(
⋃
β<α Φ

β
1 , . . . ,

⋃
β<α Φ

β
m), 1 ≤ i ≤ m.

We write (Φ∞
1 , . . . , Φ∞

m ) = (
⋃
α Φ

α
1 , . . . ,

⋃
α Φ

α
m) for the union of the stages.

Using simultaneous transfinite induction, it is easy to verify that the
Knaster–Tarski Theorem (Theorem 2.6.2) extends to monotone systems of
operators.

Theorem 2.6.13. Let A be a set, and (Φ1, . . . , Φm) a monotone system of
operators on A.

• (Φ1, . . . , Φm) has a least fixed point lfp(Φ1, . . . , Φm).
• There is an ordinal γ such that for every δ > γ,

lfp(Φ1, . . . , Φm) = (Φ∞
1 , . . . , Φ∞

m ) = (Φγ1 , . . . , Φ
γ
m) = (Φδ1, . . . , Φ

δ
m).

If A is a finite set, then there is an integer s ≤
∏m
i=1 |A|ki such that for

every δ > s,

lfp(Φ1, . . . , Φm) = (Φ∞
1 , . . . , Φ∞

m ) = (Φs1, . . . , Φ
s
m) = (Φδ1, . . . , Φ

δ
m).

• The least fixed point lfp(Φ1, . . . , Φm) of (Φ1, . . . , Φm) is equal to the (coor-
dinatewise) intersection of all fixed points of (Φ1, . . . , Φm).

Definition 2.6.14. Let (Φ1, . . . , Φm) be a monotone system of operators on
A. The closure ordinal of this system, denoted by cl(Φ1, . . . , Φm), is the small-
est ordinal γ such that

(Φγ1 , . . . , Φ
γ
m) = (

⋃

β<γ

Φβ1 , . . . ,
⋃

β<γ

Φβm).

We now consider systems of operators arising from first-order formulas.

Definition 2.6.15. Let σ be a vocabulary.

• A system of first-order formulas is a sequence

(ϕ1(x1, S1, . . . , Sm), . . . , ϕm(xm, S1, . . . , Sm))

of first-order formulas over the vocabulary σ∪{S1, . . . , Sm} such that each
xi is a sequence of variables whose length is equal to the arity of the relation
symbol Si, 1 ≤ i ≤ m. (Of course, some of the relation symbols S1, . . . , Sm
may not occur in the formula ϕi.)
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• If A is a σ-structure, then a system of first-order formulas as defined above
gives rise to a system (Φ1, . . . , Φm) of operators on A such that for every
i ≤ m,

Φi(P1, . . . , Pm) = {ai : A |= ϕi(ai, P1, . . . , Pm)}.

• Let (ϕ1(x1, S1, . . . , Sm), . . . , ϕm(xm, S1, . . . , Sm)) be a system of first-order
formulas, each of which is positive in S1, . . . , Sm. We write (ϕ∞

1 , . . . , ϕ∞
m )

for the least fixed point of the monotone system associated with this system
of positive first-order formulas. Similarly, we write cl(ϕ1, . . . , ϕm) for the
closure ordinal of this system.

Example 2.6.16. Even Path and Odd Path. Let ϕ1(x, y, S1, S2) be the pos-
itive first-order formula

E(x, y) ∨ (∃z)(E(x, z) ∧ S2(z, y)),

and let ϕ2(x, y, S1, S2) be the positive first-order formula

(∃z)(E(x, z) ∧ S1(z, y)).

Consider the least fixed point (ϕ∞
1 , ϕ∞

2 ) of the system consisting of these two
formulas. It is easy to see that ϕ∞

1 defines the Odd Path query OP on graphs
and ϕ∞

2 defines the Even Path query EP on graphs, where, for every graph
G = (V,E),

OP (G) = {(a, b) ∈ V 2 : there is a path of odd length from a to b}
EP (G) = {(a, b) ∈ V 2 : there is a path of even length from a to b}.

The next result asserts that least fixed points of systems of positive first-
order formulas have the same expressive power as LFP1-formulas. Moreover,
it asserts that systems consisting of positive existential and positive universal
first-order formulas are as powerful as systems of arbitrary positive first-order
formulas.

Theorem 2.6.17. Let σ be a vocabulary, let C be a class of σ-structures each
of which has at least two elements in its universe, and let Q be a query on C.
Then the following statements are equivalent:

1. Q is LFP1-definable on C.
2. There is a system (ϕ1(x1, S1, . . . , Sm), . . . , ϕm(xm, S1, . . . , Sm)) of pos-

itive first-order formulas such that ϕ∞
m defines Q on C and each

ϕi(xi, S1, . . . , Sm) is either a positive existential first-order formula or a
positive universal first-order formula, 1 ≤ i ≤ m.

3. There is a system (ϕ1(x1, S1, . . . , Sm), . . . , ϕm(xm, S1, . . . , Sm)) of posi-
tive first-order formulas such that ϕ∞

m defines Q on C.



2.6 Logics with Fixed-Point Operators 73

Proof. (Sketch) Since the direction (2) ⇒ (3) is trivial, it suffices to estab-
lish the directions (1) ⇒ (2) and (3) ⇒ (1). The proof of (1) ⇒ (2) is by
induction on the construction of LFP1-formulas. For concreteness, suppose
that we are given the LFP1-formula (∃y)ϕ∞(x, y), where ϕ(x, y, S) is a first-
order formula of the form (∀z)(∃w)θ(x, y, z, w, S) that is positive in S, and
where θ(x, y, z, w, S) a quantifier-free formula and S a binary relation symbol.
Consider the system

(ϕ1(x, y, z, S1, S2, S3), ϕ2(x, y, S1, S2, S3), ϕ3(x, S1, S2, S3)),

where

ϕ1(x, y, z, S1, S2, S3) ≡ (∃w)θ(x, y, z, w, S2)
ϕ2(x, y, S1, S2, S3) ≡ (∀z)S1(x, y, z)
ϕ3(x, S1, S2, S3) ≡ (∃y)S2(x, y),

and where S1 is a ternary relation symbol, S2 a binary one, and S3 a unary
one. By transfinite induction on the stages and using the monotonicity of the
formulas, it is not hard to verify that the given LFP1-formula (∃y)ϕ∞(x, y)
is logically equivalent to ϕ∞

3 (x).
The other steps of this direction are quite similar. For instance, sup-

pose we are given the LFP1-formula ϕ∞(x, y) ∧ ψ∞(x, y), where ϕ(x, y, S)
and ψ(x, y, S) are first-order formulas that are positive in S. By the induc-
tion hypothesis, we may assume that there are systems (ϕ1, . . . , ϕm) and
(ψ1, . . . , ψs) of positive existential and positive universal first-order formulas
such that ϕ∞(x, y) is logically equivalent to ϕ∞

m (x, y) and ψ∞(x, y) is logically
equivalent to ψ∞

s (x, y). Suppose that the relation variables in the first system
are S1, . . . , Sm and in the second system T1, . . . , Ts. Consider the system

(ϕ1, . . . , ϕm, ψ1, . . . , ψs, χ),

where χ is the formula Sm(x, y) ∧ Ts(x, y). Then the given LFP1-formula
ϕ∞(x, y) ∧ ψ∞(x, y) is logically equivalent to χ∞(x, y).

We now focus on the direction (3) ⇒ (1). Again, for concreteness, suppose
we are given the system (ϕ1(x, S1, S2), ϕ2(y, z, S1, S2)), where ϕ1 and ϕ2 are
first-order formulas that are positive in S1, S2, and where S1 is a unary relation
symbol, and S2 is a binary relation symbol. Let S be a 5-ary relation symbol
and let ϕ(u, v, x, y, z, S) be the first-order formula

(u �= v ∧ ϕ1(x, T1, T2) ∨ (u = v ∧ ϕ2(y, z, T1, T2)),

which is positive in S, and where

T1 = {x′ : (∃u′)(∃v′)(u′ �= v′ ∧ S(u′, v′, x′, u′, u′)}
T2 = {(y′, z′) : (∃u′)S(u′, u′, u′, y′, z′)}.
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By induction on the stages and using the monotonicity of the formulas, one
can verify that for every ordinal α, we have that ϕα1 (x) is logically equivalent
to (∃u)(∃v)((u �= v) ∧ ϕα1 (u, v, x, u, u)), while at the same time ϕα2 (y, z) is
logically equivalent to (∃u)(ϕα(u, u, u, y, z). It follows that ϕ∞

1 (x) is logically
equivalent to (∃u)(∃v)((u �= v) ∧ ϕ∞(u, v, x, u, u)) and ϕ∞

2 (y, z) is logically
equivalent to (∃u)ϕ∞(u, u, u, y, z). �

Several remarks are in order now. In Moschovakis’s book [54], the equiva-
lence between statements (1) and (2) is attributed to P. Aczel (in an unpub-
lished note); the same monograph contains a detailed proof of the direction
(3) ⇒ (1), which is often called the Simultaneous Induction Lemma.

Theorem 2.6.17 is a basic and extremely useful result about the expressive
power of least fixed-point logic LFP1. It shows that, although on the face of
it from Definition 2.6.5 the syntax of LFP1 is quite restricted, LFP1 is robust
enough to simulate least fixed points of systems of positive first-order for-
mulas. It also facilitates the task of showing that a query is LFP1-definable,
because quite often it is easier to define a query by mutual recursion using a
system of positive first-order formulas. Furthermore, the equivalence between
statements (1) and (2) in Theorem 2.6.17 reveals that no hierarchy of progres-
sively more expressive sublogics of LFP1 arises when one restricts the length
of quantifier alternation in the formulas occurring in systems. Thus, there
are just two main sublogics of least fixed-point logic obtained by imposing
restrictions on the quantification pattern: ELFP1 and ULFP1. The former is
the sublogic of LFP1 determined by systems of positive existential first-order
formulas, while the latter is the sublogic of LFP1 determined by systems
of positive universal first-order formulas. In what follows, we shall consider
certain fragments of ELFP1 that have played an important role in database
theory.

2.6.3 Datalog and Datalog( �=)

Datalog can be succinctly described as the data sublanguage of logic pro-
gramming. More formally, a Datalog program π is a finite set of function-free,
�=-free, and negation-free rules of the form

t0 : − t1, . . . , tm,

where each ti is an atomic formula R(x1, . . . , xn) for some n-ary relation
symbol, n ≥ 1; in addition, t0 may be a 0-ary relation symbol standing
for “true”. The expression t0 is the the head of the rule, and the expres-
sion t1, . . . , tm is the body of the rule. The relation symbols that occur in
the heads of the rules of a given Datalog program π are usually called the
intensional database predicates (IDBs) of π, and all others are the exten-
sional database predicates (EDBs) of π. One of the IDBs is designated as
the goal of π. Note that IDBs may occur in the bodies of rules and, thus,
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a Datalog program can be viewed as a simultaneous recursive specification
of the IDBs. Given a set of relations for the EDBs of π, each IDB is orig-
inally instantiated to the empty relation and then the rules of the Datalog
program are applied repeatedly until no new tuples are added to the IDBs.
An application of a rule entails adding to the IDB in the head of the rule
all tuples that satisfy the head of the rule. This is an informal description of
the “bottom-up” evaluation of a Datalog program, and it provides the pro-
cedural semantics of that program. Alternatively, a Datalog program can be
given declarative semantics using least fixed points of a recursive specification
(see [1, 65] for precise definitions). The query defined by a Datalog program
π is the query whose value on a structure A is the value of the goal of π with
the relations of A as EDBs of π. If the goal of π is 0-ary, then π defines a
Boolean query.

Example 2.6.18. Transitive Closure revisited. Consider the following Dat-
alog program having E as its only EDB and S as its only IDB:

∣
∣
∣
∣
S(x, y) : − E(x, y)
S(x, y) : − E(x, z), S(z, y)

This program defines the Transitive Closure query. Note that the Tran-

sitive Closure query is also definable by the following Datalog program:
∣
∣
∣
∣
S(x, y) : − E(x, y)
S(x, y) : − S(x, z), S(z, y)

Example 2.6.19. Path Systems revisited. Consider the following Datalog
program having A and R as its EDBs and T as its only IDB:

∣
∣
∣
∣
T (x) : − A(x)
T (x) : − T (y), T (z), R(x, y, z)

This program defines the Path Systems query.

Note that Example 2.6.19 reveals that the data complexity of Datalog is
P-complete, that is, it is the same as that of the full LFP, even though Datalog
is a small fragment of it.

Example 2.6.20. Non-2-Colorability. Consider the following Datalog pro-
gram having E as its only EDB, O and Q as its IDBs, and Q as its 0-ary goal
predicate: ∣

∣
∣
∣
∣
∣

O(x, y) : − E(x, y)
O(x, y) : − E(x, z), E(z, w), O(w, y)
Q : − O(x, x)

In this program, O defines the set of pairs of nodes connected via a path of
odd length. Consequently, Q defines the set of all graphs that contain a cycle
of odd length, that is, the set of all graphs that are not 2-colorable.
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As seen earlier in Example 2.6.6, the Transitive Closure query is defin-
able as the least fixed point of an existential and positive in S first-order
formula. Similarly, as seen in Example 2.6.7, the Path Systems query is
definable as the least fixed point of an existential and positive in T first-order
formula. Moreover, these formulas are �=-free and negation-free (that is, they
are also positive in E). In the other direction, the Non-2-Colorability

query is definable by the formula (∃x)ϕ∞(x, x), where ϕ(x, y,O) is the fol-
lowing existential first-order formula that is positive in O and E, and also
�=-free:

E(x, y) ∨ (∃z)(∃w)(E(x, z) ∧ E(z, w) ∧O(w, y)).

Chandra and Harel [12] were the first to point out that these connections are
not accidental.

Proposition 2.6.21. [12] Let C be a class of structures and Q a query on C.
The following statements are then equivalent:

• Q is definable on C by a Datalog program.
• Q is definable on C by ϕ∞

m for some system (ϕ1, . . . , ϕm) of first-order
formulas such that each ϕi is of the form (∃zi)ψi and ψi is a conjunction
of atomic formulas.

Proof. (Hint) Every rule of a Datalog program gives rise to a formula of a sys-
tem of the required form. Specifically, the body of the rule is first rewritten
as a conjunction of the atomic formulas occurring in it; after this, the vari-
ables occurring in the body, but not in the head of the rule, are existentially
quantified out. Conversely, every formula in such a system can be viewed as
a rule of a Datalog program. �

Although Datalog can express P-complete queries, it is strictly less expres-
sive than LFP1. As we shall see next, some of the limitations of Datalog are
consequences of preservation properties possessed by Datalog queries.

Definition 2.6.22. Let σ be a vocabulary.

• A homomorphism h : A → B between two σ-structures A and B is a
mapping h from the universe A of A to the universe B of B with the
following properties:
– for every constant symbol c in σ, we have that h(cA) = cB;
– for every relation symbol R in σ and every tuple a from A, if a ∈ RA,

then h(a) ∈ RB.
• Let Q be a k-ary query on a class C of σ-structures. We say that Q is

preserved under homomorphisms if, for every two structures A, B in C,
every homomorphism h : A→ B, and every k-tuple a from A, if a ∈ Q(A),
then h(a) ∈ Q(B).

• Let Q be a Boolean query on a class C of σ-structures. We say that Q is
preserved under homomorphisms if, for every two structures A, B in C
such that there is a homomorphism from A to B, if A |= Q, then B |= Q.
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Proposition 2.6.23. Let σ be a vocabulary. Every Datalog-definable query is
preserved under homomorphisms on the class S of all σ-structures.

Proof. (Sketch) Proposition 2.6.21 implies that the system of operators asso-
ciated with a Datalog program is definable by first-order formulas that are
positive in every relation symbol occurring in them and also are �=-free. Using
this fact and induction on the stages of the system, it is easy to show that
each stage of the system is preserved under homomorphisms on S. �

Consider the existential first-order sentence (∃x)(∃y)(x �= y) asserting that
there are at least two distinct elements in the universe. An immediate con-
sequence of Proposition 2.6.23 is that this sentence is not equivalent to any
Datalog sentence, because it is not preserved under homomorphisms.

Datalog(�=) is the extension of Datalog in which �= is allowed in the rules.
The next example illustrates the syntax of Datalog(�=).

Example 2.6.24. Node-Avoiding Path. Let Q be the following query on
graphs: given a graph G = (V,E) and three nodes a, b, c, is there a path
from a to b that avoids c?

This query is definable by the following Datalog(�=)-program:

T (x, y, w) : − E(x, y) ∧ w �= x ∧w �= y

T (x, y, w) : − E(x, z) ∧ T (z, y, w) ∧ w �= x.

It is easy to see that Q is not preserved under homomorphisms and, conse-
quently, it is not expressible in Datalog.

Note that the above query is also definable by the least fixed point of the
existential and positive in T first-order formula

(E(x, y) ∧ w �= x ∧ w �= y) ∨ (∃z)(E(x, z) ∧ T (z, y, w) ∧ w �= x).

This is an instance of a more general result that is analogous to Proposition
2.6.21. Specifically, a query Q is definable on a class C by a Datalog(�=) pro-
gram if and only if Q is definable on C by ϕ∞

m for some system (ϕ1, . . . , ϕm)
of first-order formulas such that each ϕi is of the form (∃zi)ψi and ψ is a
conjunction of atomic formulas and inequalities �=.

We now present an example of a query on undirected graphs that is defin-
able by a Datalog(�=) program, but proving this fact requires some machinery
from graph theory.

Example 2.6.25. The Even Simple Path query asks: given a graph G =
(V,E) and two nodes a, b, is there a simple path of even length from a to b?

Using some results of Fortune, Hopcroft, and Wyllie [26] about the Graph

Homeomorphism Problem, it can be shown that Even Simple Path on
directed graphs is an NP-complete problem. In contrast, there is a polynomial-
time algorithm for Even Simple Path when the inputs are undirected
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graphs. Moreover, in an unpublished note, Yannakakis showed that the follow-
ing Datalog(�=) program with Q as its goal defines the Even Simple Path

query on undirected graphs:
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T (x, y, w) : − E(x, y) ∧ w �= x ∧ w �= y
T (x, y, w) : − E(x, z) ∧ T (z, y, w) ∧ w �= x
P (x, y) : − E(x, y)
P (x, y) : − Q(x,w), E(w, y), T (x,w, y)
Q(x, y) : − P (x,w), E(w, y), T (x,w, y).

The correctness of this program is established by proving the following on
undirected graphs:

• T defines the Node-Avoiding Path query.
• P defines the Odd Simple Path query (that is, “is there a simple path

of odd length from a to b?”).
• Q defines the Even Simple Path query.

The proof proceeds by induction on the stages of the above Datalog(�=) pro-
gram and makes use of Menger’s Theorem, a well-known result in graph theory
which asserts that if an undirected graph G = (V,E) and two nodes a, b have
the property that every two paths from a to b intersect at some intermediate
node, then there is a node c different from a and b such that all paths from a
to b intersect at c (Menger’s Theorem is a special case of the Max Flow–Min
Cut Theorem; see [18]).

A one-to-one homomorphism between two σ-structures A and B is a
homomorphism h : A → B that is also a one-to-one mapping from A to
B. The next result is proved along the lines of the proof of Proposition 2.6.23.

Proposition 2.6.26. Every Datalog(�=)-definable query is preserved under
one-to-one homomorphisms on the class S of all σ-structures.

Consider the universal first-order sentence (∀x)(∀y)(x �= y → E(x, y)),
which asserts that G = (V,E) is a complete graph. Since this sentence is
not preserved under one-to-one homomorphisms, it is not equivalent to any
Datalog(�=) sentence. Thus, on the class G of all finite graphs, Datalog(�=) is
strictly more expressive than Datalog, but strictly less expressive than LFP1.

Another difference between Datalog(�=) and LFP1 has to do with closure
ordinals on infinite structures. As seen earlier in Example 2.6.8, there are
positive universal first-order formulas whose closure ordinal can be arbitrar-
ily large on infinite structures. In contrast, it is not hard to prove that, on
every infinite structure, the closure ordinal of every of Datalog(�=) program
is at most ω. This follows from the fact that existential quantification dis-
tributes over an infinite union, that is, (∃x)(

⋃∞
n=1 Pn) is logically equivalent

to
⋃∞
n=1(∃x)Pn.
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2.6.4 The Complementation Problem for LFP1 and a Normal
Form for LFP

The structure of arithmetic is the structure N = (N,+,×), where N is the
set of all natural numbers, and + and × are ternary relations for the graphs
of the addition and multiplication functions on the natural numbers. The
expressive power of LFP1 on N = (N,+,×) was first studied by Kleene [42]
and Spector [62], who established the following important result, known as
the Kleene–Spector Theorem (see [54]).

Theorem 2.6.27. Let N = (N,+,×) be the structure of arithmetic.

• LFP1(N) = USO(N), that is, a relation R ⊆ Nk is LFP1-definable on
N if and only if it is definable on N by a universal second-order formula.

• LFP1(N) is not closed under complements.

Several remarks are now in order, so that the Kleene–Spector Theorem be
put into the right perspective. First, if σ is a vocabulary and A is an arbitrary
σ-structure, then LFP1(A) ⊆ USO(A). The reason for this is that if ϕ(x, S)
is a first-order formula that is positive in S over the vocabulary σ∪{S}, then
it is easy to see that the least fixed point ϕ∞(x) is definable on A by the
USO-formula

(∀S)((∀z)(ϕ(z, S) ↔ S(z))) → S(x)),

which asserts that x belongs to every fixed point of ϕ. Indeed, this formula
defines the least fixed point of ϕ(x, S), because, as seen in Theorem 2.6.2,
the least fixed point of a monotone operator is the intersection of all its fixed
points. If A is an arbitrary infinite σ-structure, then LFP1(A) may be prop-
erly contained in USO(A); for instance, this is the case for the structure
Q = (Q,<), where Q is the set of rational numbers and < is the standard
linear order on Q. In contrast, the Kleene–Spector Theorem asserts that the
LFP1-definable relations coincide with the USO-definable ones on the struc-
ture N = (N,+,×) of arithmetic; thus, this result provides a “constructive”
characterization of universal second-order logic on N. Moschovakis [54] has
shown that the Kleene–Spector Theorem actually extends to countable struc-
tures A possessing a first-order coding machinery for finite sequences, that
is, countable structures in which finite sequences of arbitrary length can be
encoded by individual elements and decoded in a first-order-definable way.
Moreover, on such countable structures A there is a binary USO-definable
relation whose projections are exactly all unary USO-definable relations (such
relations are called universal USO-definable relations). Using this fact and a
diagonalization argument, it can be shown that the USO-definable relations
on such structures A are not closed under complements. In particular, the
LFP1-definable relations on N are not closed under complements.

Chandra and Harel [10] initiated the study of LFP on finite structures;
moreover, motivated by the Kleene–Spector Theorem, they conjectured that
the LFP1-definable queries on the class G of all finite graphs were not closed
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under complements. This conjecture, however, was refuted by Immerman [38,
39], who showed that if C is an arbitrary class of finite structures, then LFP1(C)
is closed under complements. In what follows, we shall outline a proof of this
result and, in the process of doing so, we shall present some other fundamental
properties of LFP1.

Definition 2.6.28. Let σ be a vocabulary.

• Let ϕ(x1, . . . , xk, S) be a first-order formula that is positive in S over the
vocabulary σ∪{S}. For every σ-structure A and every k-tuple a ∈ Ak, we
write

|a|ϕ =
{

min{α : A |= ϕα(a)} if A |= ϕ∞(a)
∞ if A |= ¬ϕ∞(a)

• Let ϕ(x, S) be a first-order formula that is positive in S over σ ∪ {S} and
let ψ(y, T ) be a first-order formula that is positive in T over σ ∪ {T }.
The stage comparison queries  ∗

ϕ,ψ and ≺∗
ϕ,ψ associated with the formulas

ϕ(x, S) and ψ(y, T ) are the queries such that for every σ-structure A,

a  ∗
ϕ,ψ b ⇐⇒ ϕ∞(a) ∧ (|a|ϕ ≤ |b|ψ)

a ≺∗
ϕ,ψ b ⇐⇒ |a|ϕ < |b|ψ.

Note that if a ≺∗
ϕ,ψ b, then |a|ϕ <∞ and, thus, a ∈ ϕ∞.

• We write  ∗
ϕ and ≺ϕ for the queries  ∗

ϕ,ϕ and ≺ϕ,ϕ, respectively.

The next two examples illustrate the meaning of the stage comparison
queries  ∗

ϕ and ≺ϕ for concrete formulas ϕ.

Example 2.6.29. Let G = (V,E) be a graph and let ϕ(x, y, S) be the formula

E(x, y) ∨ (∃z)(E(x, z) ∧ S(z, y)),

whose least fixed point defines the transitive closure of E. A moment’s
reflection reveals that  ∗

ϕ is the distance query on graphs. More precisely,
(a, a′)  ∗

ϕ (b, b′) holds if and only if there is a path from a to a′ and either
there is no path from b to b′ or the length of the shortest path from a to a′ is
at most equal to the length of the shortest path from b to b′.

Example 2.6.30. As in Examples 2.6.7 and 2.6.19, assume that a proof system
is encoded by a structure S = (F,A,R), where F is a set of formulas, A is a
set of axioms, and R is a ternary rule of inference. Let ψ(x, T ) be the formula

A(x) ∨ (∃y)(∃z)(T (y) ∧ T (z) ∧R(x, y, z)),

whose least fixed point defines the set of all theorems of this proof system.
Then the stage comparison queries  ∗

ψ and ≺∗
ψ compare lengths of derivations

of theorems of S. In particular, f ≺∗
ψ g holds if and only if f is a theorem of

S and either g is not a theorem of S or f has a derivation in the proof system
S that is shorter than any derivation of g.
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Theorem 2.6.31. (The Stage Comparison Theorem [54].) Let σ be a vocab-
ulary. If ϕ(x, S) and ψ(y, T ) are positive first-order formulas, then the stage
comparison queries  ∗

ϕ,ψ and ≺∗
ϕ,ψ are LFP1-definable on the class of all

σ-structures.

Proof. (Hint) The stage comparison queries satisfy the equivalences

x  ∗
ϕ,ψ y ⇐⇒ Φ|y|ψ(x) ⇐⇒ Φ(x, {x′ : |x′|ϕ < |y|ψ})

x ≺∗
ϕ,ψ y ⇐⇒ ¬Ψ |x|ϕ(y) ⇐⇒ ¬Ψ(y, {y′ : |y′|ψ < |x|ϕ}).

Note that if x ∈ ϕ∞, then, for every y′, we have that |y′|ψ < |x|ϕ holds if
and only if ¬(x  ∗

ϕ,ψ y′). It follows that the stage comparison queries satisfy
the following recursive specifications:

x  ∗
ϕ,ψ y ⇐⇒ ϕ(x, {x′ : x′ ≺∗

ϕ,ψ y})
x ≺∗

ϕ,ψ y ⇐⇒ ¬ψ(y, {y′ : ¬ (x  ∗
ϕ,ψ y′}).

This motivates us to consider the system (χ1(x, y, S1, S2), χ2(x, y, S1, S2)) of
the first-order formulas

χ1(x, y, S1, S2) ≡ ϕ(x, {x′ : S2(x′,y)})
χ2(x, y, S1, S2) ≡ ¬ψ(y, {y′ : ¬S1(x,y′)}).

Note that these formulas are positive in both S1 and S2, and thus their system
has a least fixed point (χ∞

1 , χ∞
2 ). Using transfinite induction, it can be shown

that χ∞
1 defines  ∗

ϕ,ψ, and that χ∞
2 defines ≺∗

ϕ,ψ. �

While the Stage Comparison Theorem is a result about the class of all
structures, the next theorem is rather special to classes of finite structures.

Theorem 2.6.32. (The Complementation Theorem for LFP1 [38, 39].) Let
σ be a vocabulary. If C is a class of finite σ-structures, then LFP1(C) is closed
under complements.

Proof. (Sketch) It suffices to show that if ϕ(x, S) is a first-order formula that
is positive in S over the vocabulary σ ∪ {S}, then the complement ¬ϕ∞ is
LFP1-definable on C.

Let Maxϕ be the query that, given a σ-structure A, returns the set of
all tuples a in ϕ∞ on A such that, for every b ∈ ϕ∞ on A, we have that
|b|ϕ ≤ |a|ϕ. In other words, Maxϕ(A) consists of all tuples from A that enter
the “last” stage of the evaluation of ϕ∞ on A. Note that if A is an infinite
structure, then Maxϕ(A) may be empty, because there may be no “last” stage
in the evaluation of ϕ (this happens precisely when the closure ordinal clϕ
on A is a limit ordinal). For instance, this is the case when G = (V,E) is
a graph of infinite diameter and ϕ(x, y, S) is the formula whose least fixed
point defines the transitive closure of the edge relation E. In contrast, if A is
a finite structure, then Maxϕ(A) �= ∅ (unless ϕ∞ = ∅ on A).
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We shall now show that Maxϕ is LFP1-definable on the class of all finite
σ-structures. Note that Maxϕ satisfies the equivalence

a ∈ Maxϕ(A) ⇐⇒ A |= (a ∈ ϕ∞) ∧ (∀b)(|a|ϕ < |b|ϕ → |a|ϕ + 1 < |b|ϕ).

It is easy to find a positive first-order formula ψ such that, on finite structures,
ψ simulates ϕ with a “one-step” delay, that is, for every tuple c ∈ ϕ∞, we
have that c enters ψ∞ exactly one stage after the stage where it enters ϕ∞.
Using stage comparison queries, the above equivalence can be rewritten as

a ∈ Maxϕ(A) ⇐⇒ A |= (a ∈ ϕ∞) ∧ (∀b)((b  ∗
ϕ a) ∨ (a ≺∗

ψ,ϕ b)).

The Stage Comparison Theorem (Theorem 2.6.31) immediately implies that
Maxϕ is LFP1-definable on the class of all finite σ-structures.

It is now easy to show that the complement ¬ϕ∞ is LFP1-definable on the
class of all finite σ-structures. Indeed, if A is a finite σ-structure, then

A |= ¬ϕ∞(a) ⇐⇒ A |= (∃y)(y ∈ Maxϕ ∧ y ≺∗
ϕ a). �

With some extra work and using the ideas in the proof of Theorem 2.6.32,
it is possible to establish the following normal form for least fixed-point logic
LFP on classes of finite structures.

Theorem 2.6.33. [38, 39] If σ is a vocabulary and C is a class of finite
σ-structures, then every LFP-definable query on C is LFP1-definable on C.
Consequently, LFP(C) = LFP1(C).

Informally, this result asserts that on finite structures the nesting of
least fixed points, greatest fixed points, and negations can be eliminated and
reduced to a single formation of the least fixed point of a positive first-order
formula combined with the positive operations of first-order logic (disjunction,
conjunction, and universal and existential quantification).

2.6.5 Partial Fixed-Point Logic

The fundamental idea behind least fixed-point logic LFP is that recursive
specifications involving positive first-order formulas can be given meaningful
fixed point semantics, because, by the Knaster-Tarski Theorem (Theorem
2.6.2), every positive first-order formula has a least fixed point. Can more
powerful logics be obtained by giving fixed point semantics to specifications
involving arbitrary (not just positive) first-order formulas? There are two main
motivations behind this question, which we now describe briefly.

Recall that on every class of finite structures, least fixed-point logic
is at least as expressive as first-order logic, but it is no more expressive
than polynomial-time computability. In particular, on the class of all finite
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structures, LFP cannot express every polynomial-time-computable query,
even though it can express P-complete queries. As discussed at length in
Chap. 3 of this volume, one of the outstanding open problems in finite
model theory is whether or not there is a logic that captures P on the
class of all finite structures. This has motivated the study of fixed-point
logics that are at least as expressive as least fixed-point logic, but are
still within the realm of polynomial-time computability on finite structures.
One such logic is inflationary fixed-point logic IFP, which, however, was
shown by Gurevich and Shelah [35] to have the same expressive power
as LFP on classes of finite structures (see Chap. 3 for the precise defini-
tions of IFP and a presentation of some of its main properties on finite
structures).

The second motivation for studying logics with more powerful fixed point
mechanisms has to do with the problem of finding logics that can express
queries in higher computational-complexity classes, beyond P and NP. The
most prominent logic in this family is partial fixed-point logic, whose main
features we shall describe in the remainder of this section.

Let Φ : P(Ak) → P(Ak) be an arbitrary (not necessarily monotone) k-ary
operator on a finite set A. As seen earlier, the finite stages Φn, n ≥ 1, of Φ
are defined by the induction

∣
∣
∣
∣
Φ1 = Φ(∅)
Φn+1 = Φ(Φn).

If Φ is not monotone, then the sequence Φn, n ≥ 1, need not be an increasing
one. Nonetheless, since A is a finite set and each Φn is a k-ary relation on
A, there must exist two positive integers m and m′ such that m < m′ and
Φm = Φm

′
. Let m′ be the smallest integer greater than m having this property.

If m′ = m + 1, then Φm is actually a fixed point of Φ, and thus the sequence
of stages of Φ converges to this fixed point. If, however, m′ > m+ 1, then the
sequence of stages of Φ cycles without ever reaching a fixed point of Φ. This
state of affairs motivates us to use the concept of the partial fixed point of an
operator Φ.

Definition 2.6.34. Let Φ : P(Ak) → P(Ak) be an arbitrary (not necessarily
monotone) k-ary operator on a finite set A. The partial fixed point pfp(Φ)
of Φ is a stage Φm such that Φm = Φm+1, if such a stage exists, or the empty
relation ∅ otherwise.

If A is a finite structure and Φ is the operator associated with some formula
ϕ(x1, . . . , xk, S) on A, then the partial fixed point pfp(ϕ) of ϕ(x1, . . . , xk, S)
is the partial fixed point pfp(Φ) of Φ.

Abiteboul and Vianu [2] introduced partial fixed-point logic PFP on finite
structures, which is the extension of first-order logic obtained by augmenting
the syntax and the semantics with partial fixed points of formulas.
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Definition 2.6.35. Let σ be a vocabulary.

• The collection of PFP-formulas over σ is defined inductively by adding
the following rule to the rules for the syntax of first-order logic. Assume
that ϕ is a PFP-formula, S is a k-ary relation symbol in free(ϕ), x =
(x1, . . . , xk) is a k-tuple of first-order variables each of which is in free(ϕ),
and u = (u1, . . . , uk) is a k-tuple of first-order variables not occurring
in ϕ. Then the expression [pfp S.ϕ](u) is a PFP-formula; moreover,
free([pfp S.S](u)) = free(ϕ) \ {x1 . . . , xk, S}.

• If A is a finite σ-structure, and a is a k-tuple from A, then A,a |=
[pfp S.ϕ](u) if a ∈ pfp(Φ), where Φ is the operator associated with ϕ
on A.

Clearly, if ϕ(x1, . . . , xk, S) is a formula that is positive in S, then the partial
fixed point pfp(ϕ) of ϕ is equal to its least fixed point lfp(ϕ). It follows that
on finite structures, partial fixed-point logic PFP is at least as expressive as
least fixed-point logic LFP. More precisely, if C is a class of finite structures,
then

LFP(C) ⊆ PFP(C).

Let ϕ(x1, . . . , xk, S) be an arbitrary first-order formula over the vocabulary
σ ∪ {S}, where S is a k-ary relation symbol. It is easy to see that, on every
finite structure A, the partial fixed point pfp(ϕ) can be evaluated in poly-
nomial space. To do this, one has to compute in succession the stages Φn of
the operator Φ associated with ϕ(x1, . . . , xk, S), while at the same time main-
taining a counter that stores in binary the number n of the current stage. At
any given time in this computation, a polynomial amount of space is used
to store the current stage Φn, to compute the next stage Φn+1, and to test
whether Φn+1 = Φn. If Φn+1 = Φn, then the computation terminates and
returns Φn as the value of the partial fixed point pfp(ϕ) of ϕ(x1, . . . , xk, S)
on A. Otherwise, Φn is replaced by Φn+1 and the counter is incremented by
one. If at some point the value of the counter exceeds 2|A|k (which is the
total number of k-ary relations on A), then the computation terminates and
returns the empty relation ∅ as the value of the partial fixed point pfp(ϕ) of
ϕ(x1, . . . , xk, S) on A. Thus, on every class C of finite structures, we have that

LFP(C) ⊆ PFP(C) ⊆ PSPACE.

The next example shows that PFP can actually express PSPACE-complete
queries.

Example 2.6.36. Generalized Path Systems. Let σ be a vocabulary
consisting of a unary relation symbol and a ternary relation symbol. As in
Example 2.6.7, a σ-structure is of the form S = (F,A,R), where A is a subset
of F and R is a ternary relation on F ; moreover, such a structure can be
interpreted as consisting of a set F of formulas, a set A of axioms, and a
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ternary rule of inference R. Let ϕ(x, T ) be the following existential first-order
formula over the vocabulary σ ∪ {T }:

A(x) ∨ (∃y)(∃z)(T (y) ∧ ¬T (z) ∧R(x, y, z)).

Intuitively, a fixed point of this formula can be viewed as a recursive specifica-
tion of a nonmonotonic proof system in which a formula x is a theorem of the
system if it is an axiom in A or it can be derived from the rule of inference R
using a theorem y of the proof system and a nontheorem z of the proof system.

Let pfp(ϕ) be the partial fixed point of the formula ϕ(x, T ). Grohe [33]
showed that evaluating pfp(ϕ) on finite σ-structures is a PSPACE-complete
problem. It follows that, unless P = PSPACE, the partial fixed point pfp(ϕ)
cannot be evaluated in polynomial time and, a fortiori, it cannot be expressed
in LFP.

The preceding remarks and Example 2.6.36 imply the following result
concerning the data complexity of PFP.

Proposition 2.6.37. The data complexity of PFP is PSPACE-complete.

Let σ be a vocabulary containing at least one relation symbol of arity 2
or higher, and let F be the class of all finite σ-structures. Although PFP can
express P-complete queries on F , it cannot express every polynomial-time
computable query on F . Indeed, in the next section we shall show that the
expressive power of PFP on F has limitations that are similar to those of
LFP on F , namely, PFP cannot express counting queries, such as Even

Cardinality. Thus, the following proper containment holds on F :

PFP(F) ⊂ PSPACE.

The state of affairs, however, is different on classes of ordered finite structures.

Theorem 2.6.38. [2, 67]. Let C be a class of ordered finite structures. The
following are equivalent for a query Q on C:

• Q is polynomial-space computable.
• Q is PFP-definable on C.

In other words, PSPACE(C) = PFP(C).

Chapter 3 contains a proof of the above theorem. Here, we discuss briefly
the history of this result and state who should be credited with the various
parts of the work. Chandra and Harel [11] introduced and studied a logic
called RQL, which is an extension of first-order logic FO with recursion
embodied in the form of WHILE looping. Vardi [67] proved that on classes of
ordered finite structures, a query is polynomial-space computable if and only
if it is RQL-definable. Later on, Abiteboul and Vianu [2] introduced partial
fixed-point logic PFP and showed that on classes of finite structures, RQL
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has the same expressive power as PFP. From these results, it follows that
PSPACE = PFP on every class C of ordered finite structures.

In this section, we have shown that on the class F of all finite
σ-structures, LFP can express P-complete problems and PFP can express
PSPACE-complete problems. At the same time, we have asserted that these
logics cannot express such basic counting properties as Even Cardinality

on F , but have given no proof of this fact. This will be done in the next
section, where we shall bring into the picture a family of infinitary logics
with finitely many variables, shall introduce new combinatorial games for
analyzing their expressive power, and shall apply the methodology of games
to derive lower bounds for expressibility in fixed-point logics and in infinitary
logics with finitely many variables.

2.7 Infinitary Logics with Finitely Many Variables

The syntax of the logics that we have encountered thus far is finitary. Mathe-
matical logicians, however, have also investigated in depth logics whose syntax
has infinitary constructs. Such logics can be obtained by augmenting the syn-
tax of first-order logic with disjunctions and conjunctions over infinite sets
of formulas, with infinite strings of quantifiers, or with both these types of
constructs. Moreover, different families of infinitary logics can be obtained by
imposing cardinality restrictions on the size of the infinitary constructs allowed
(see [17, 41]). The infinitary logic L∞ω is the most powerful among all logics
with infinitary connectives and with finite strings of quantifiers. In addition
to the rules of first-order logic, the syntax of L∞ω has the following two rules:

• If Φ is an arbitrary set of L∞ω-formulas, then the infinitary disjunction∨
Φ is also an L∞ω-formula.

• If Φ is an arbitrary set of L∞ω-formulas, then the infinitary conjunction∧
Φ is also an L∞ω-formula.

The infinitary formulas
∨
Φ and

∧
Φ have straightforward semantics. For

instance, if Φ is a set of L∞ω-sentences and A is a structure, then A |=
∨
Φ

if and only if there is at least one L∞ω-sentence ϕ in Φ such that A |= ϕ.
Although L∞ω can make interesting distinctions on infinite structures, it

turns out that this logic is too powerful on classes of finite structures to be
of any use. Specifically, it is easy to see that every Boolean query Q on the
class F of all finite σ-structures is L∞ω-definable. For every finite structure
A, let ψA be a first-order sentence that defines A up to isomorphism; such a
sentence asserts that there are precisely as many elements as the cardinality
of the universe A of A, and states which tuples are in the relations of A and
which are not. Since Boolean queries are closed under isomorphisms, Q is
definable by the L∞ω-sentence

∨
{A:Q(A)=1} ψA. Note that Q is also definable

by the L∞ω-sentence
∧

{A:Q(A)=0} ¬ψA. Thus, every query on the class F
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of all finite σ-structures can be defined by both a countable disjunction of
first-order formulas and a countable conjunction of first-order formulas.

2.7.1 The Infinitary Logic Lω
∞ω

In general, L∞ω-formulas may have an infinite number of distinct variables.
Barwise [8] introduced a family of fragments of L∞ω in which there is a finite
upper bound on the number of distinct variables in each formula.

Definition 2.7.1. Let σ be a vocabulary.

• For every positive integer k, we write FOk to denote the collection of all
first-order formulas over σ with at most k distinct variables.

• For every positive integer k, the k-variable infinitary logic Lk∞ω is the
collection of all L∞ω-formulas over σ with at most k distinct variables.

• The finite-variable infinitary logic Lω∞ω is the collection of all L∞ω-
formulas over σ with finitely many variables, that is,

Lω∞ω =
⋃

k≥1

Lk∞ω .

Note that, although each Lk∞ω-formula has at most k distinct variables,
there is no restriction on the number of occurrences of each variable in the for-
mula. In particular, even FOk-formulas may be of unbounded quantifier rank.
In many cases, this makes it possible to define interesting properties by judi-
ciously reusing the available variables, in spite of the limited supply of distinct
variables. To illustrate this point, for every positive integer m, let θm be a first-
order sentence asserting that there are at least m elements in the universe of
the structure. It can be shown that on the class G of all finite graphs, θm is not
equivalent to any first-order sentence with fewer than m variables. In contrast,
it is easy to see that on the class L of all finite linear orders, θm is equivalent
to a sentence of FO2. For instance, θ4 is equivalent to the FO2-sentence

(∃x)(∃y)[y < x ∧ (∃x)(x < y ∧ (∃y)(y < x))].

It follows that L2
∞ω can define arbitrary cardinalities on L, since, for every

set S of integers, we have that

n ∈ S ⇐⇒ Ln |=
∨

m∈S
(θm ∧ ¬θm+1).

In particular, the Even Cardinality query is L2
∞ω-definable on L.

The original motivation behind the introduction of finite-variable infini-
tary logics was to study inductive definability on fixed infinite structures.
Indeed, Barwise [8] used the infinitary logics Lk∞ω, k≥ 1, as a tool to solve an
open problem concerning the closure ordinals of positive first-order formulas
on fixed infinite structures. Since the 1980s, however, these logics have found
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many uses and applications in finite model theory, where they have become
quite indispensable in the study of fixed-point logics. The main reason for
this is that on classes of finite structures, Lω∞ω subsumes the fixed-point
logics LFP and PFP that we encountered earlier. Moreover, definability in
the infinitary logics Lk∞ω, k ≥ 1, can be characterized in terms of certain
combinatorial games in a manner analogous to the characterization of
first-order definability in terms of Ehrenfeucht–Fräıssé games.

Before spelling out the connection between fixed-point logics and Lω∞ω

in more precise terms, we present a relevant example. Let ϕn(x, y) be the
first-order formula

(∃z1) . . . (∃zn−1)(E(x, z1) ∧ . . . ∧ E(zn−1, y)),

which defines the query “there is a path of length n from x to y”, n ≥ 1. At
first sight, it appears that this query cannot be expressed with fewer than
n + 1 variables, since, in addition to the variables x and y, another n − 1
variables seem to be needed in order to describe the intermediate nodes
on a path of length n from x to y. It turns out, however, that just three
variables, x, y, and z, suffice to express this query; the third variable z can be
repeatedly reused in such a way that it ranges over the intermediate points on
a path from x to y. Specifically, it can be shown by induction on n that each
formula ϕn(x, y) is equivalent to an FO3-formula ψn(x, y) whose variables are
among x, y, and z. First, ψ1(x, y) is equivalent to the atomic formula E(x, y).
Assume now that ϕn(x, y) is equivalent to an FO3-formula ψn(x, y) whose
variables are x, y, and z. Then ϕn+1(x, y) is equivalent to the FO3-formula

(∃z)[E(x, z) ∧ (∃x)(z = x ∧ ψn(x, y))],

whose variables are x, y, and z. Consequently, the Connectivity query is
L3
∞ω-definable by the sentence

(∀x)(∀y)(
∨

n≥1

ψn(x, y)).

The preceding construction can be extended and applied to the stages of
every first-order-definable operator; this makes it possible to show that the
stages of every first-order-definable operator are definable by an Lk∞ω-formula
for some positive integer k that depends only on the formula defining the
operator and not on the particular level of the stage. A detailed proof of the
next result can be found in [46, 49]

Theorem 2.7.2. Assume that σ is a vocabulary, S is a m-ary relation symbol
not in σ, and ϕ(x1, . . . , xm, S) is a first-order formula over the vocabulary
σ∪{S} such that the number of variables (free and bound) of ϕ(x1, . . . , xm, S)
is equal to k.

• For every positive integer n ≥ 1, there is an FOk-formula ϕn(x1, . . . , xm)
that defines the nth stage Φn of the operator Φ associated with the formula
ϕ(x1, . . . , xm, S) on every σ-structure.
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• The partial fixed point pfp(ϕ) of ϕ(x1, . . . , xm, S) is Lk∞ω-definable on
the class of all finite σ-structures.

Consequently, if C is a class of finite σ-structures, then

LFP(C) ⊆ PFP(C) ⊆ Lω∞ω(C).

For arbitrary first-order formulas ϕ(x1, . . . , xm, S), only the finite stages
of the associated operator were defined earlier. Recall, however, that if
ϕ(x1, . . . , xm, S) is a positive first-order formula, we have actually defined the
stages Φα of the associated operator Φ for an arbitrary ordinal α (Definition
2.6.1). It can be shown that each such stage Φα is definable by an Lk∞ω-formula,
where k is the number of variables (free and bound) in ϕ(x1, . . . , xm, S).
It is not true, however, that every LFP-definable query on the class S of
all σ-structures is Lω∞ω-definable. For instance, the Well-Foundedness

query is LFP-definable on S, but it is not L∞ω-definable on S (see [17]);
consequently, this query is not Lω∞ω-definable either. Intuitively, Lω∞ω cannot
subsume LFP on the class S of all σ-structures, because the closure ordinals
of positive first-order formulas can be arbitrarily large and so the least fixed
point of a positive formula cannot be obtained by taking the disjunction over
the formulas defining the stages of the formula (this would require taking a
disjunction over a proper class, which is not allowed in the syntax of L∞ω).
It is true, however, that if C is a class of σ-structures of bounded cardinality
(that is, there is a cardinal number λ such that the universe of each structure
in C has cardinality at most λ), then LFP(C) ⊆ Lω∞ω(C).

2.7.2 Pebble Games and Lω
∞ω-Definability

The finite-variable infinitary logic Lω∞ω can be used as a tool in studying
fixed-point logics on finite structures. In particular, certain structural proper-
ties of Lω∞ω are inherited by the fixed-point logics LFP and PFP. Moreover,
lower bounds for definability in Lω∞ω yield immediately similar results for
definability in LFP and PFP. The advantage of Lω∞ω over LFP and PFP is
that, for every positive integer k, definability in Lk∞ω can be characterized in
terms of combinatorial k-pebble games, which we introduce next.

Definition 2.7.3. Let k be a positive integer, σ a vocabulary, and A and B
two σ-structures.

The k-pebble game on A and B is played between two players, called
the Spoiler and the Duplicator, each of whom has k pebbles that are labeled
1, . . . , k. In each move, the Spoiler selects one of the two structures and
either places a pebble that is not currently used on an element of the chosen
structure or removes a pebble from an element of the chosen structure. The
Duplicator responds by either placing the pebble with the same label on an
element of the other structure or by removing the pebble with the same label
from an element of the other structure.
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Assume that at some point in time during the game, r pebbles have been
placed on each structure, where 1 ≤ r ≤ k, and let (ai, bi) ∈ A×B, 1 ≤ i ≤ r,
be the pairs of elements of A and B such that the label of the pebble on ai is
the same as the label of the pebble on bi. The Spoiler wins the k-pebble game
on A and B at this point in time if the mapping ai �→ bi, 1 ≤ i ≤ r, is not an
isomorphism between the substructures of A and B generated by {a1, . . . , ar}
and {b1, . . . , br}, respectively.

The Duplicator wins the k-pebble game on A and B if the above never
happens, which means that the Duplicator has a winning strategy that allows
him to continue playing “forever” by maintaining a partial isomorphism at
every point in time.

The above description of a winning strategy for the Duplicator in the
k-pebble game is rather informal. The concept of a winning strategy can
be made precise, however, in terms of families of partial isomorphisms
with appropriate closure and extension properties. Recall that a partial
isomorphism from a σ-structure A to a σ-structure B is an isomorphism
from a substructure of A to a substructure of B. In particular, every partial
isomorphism from A to B must map each constant cAj of A to the constant
cBj of B, 1 ≤ j ≤ s, where s is the number of distinct constant symbols in σ.
Thus, when viewed as a set of ordered pairs, each partial isomorphism from
A to B must contain all pairs (cAj , c

B
j ), 1 ≤ j ≤ s.

Definition 2.7.4. A winning strategy for the Duplicator in the k-pebble
game on A and B is a nonempty family I of partial isomorphisms from A
to B with the following properties:

1. If f ∈ I, then |f − {(cA1 , cB1 ), . . . , (cAs , cBs )}| ≤ k.
2. I is closed under subfunctions:

If g ∈ I and f is a function such that {(cA1 , cB1 ), . . . , (cAs , c
B
s )} ⊆ f ⊆ g,

then f ∈ I.
3. I has the forth property up to k:

If f ∈ I and |f − {(cA1 , cB1 ), . . . , (cAs , c
B
s )}| < k, then for every a ∈ A,

there is a g ∈ I such that f ⊆ g and a ∈ dom(g).
4. I has the back property up to k:

If f ∈ I and |f − {(cA1 , cB1 ), . . . , (cAs , cBs )}| < k, then for every b ∈ B,
there is a g ∈ I such that f ⊆ g and b ∈ rng(g).

Intuitively, the second condition provides the Duplicator with a “good”
move when the Spoiler removes a pebble from an element of A or B, while
the last two conditions provide the Duplicator with “good” moves when the
Spoiler places a pebble on an element of A or of B.

Several properties of the k-pebble game follow easily from the definitions.
For instance, if k′ ≥ k and the Spoiler wins the k-pebble game on A and B,
then the Spoiler also wins the k′-pebble game on A and B. Moreover, for
every k ≥ 1, the relation “the Duplicator wins the k-pebble game on A and
B” is an equivalence relation on the class S of all σ-structures.
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The following examples illustrate k-pebble games on concrete finite
structures.

Example 2.7.5. For every m ≥ 1, let Km be the m-clique, that is, the
complete graph with m nodes. It is quite clear that for every k ≥ 1,

• the Duplicator wins the k-pebble game on Kk and Kk+1;
• the Spoiler wins the (k + 1)-pebble game on Kk and Kk+1.

The case k = 4 is illustrated in Fig. 2.9.
Note that the same state of affairs holds for the Ehrenfeucht–Fräıssé game

on cliques: the Duplicator wins the k-move Ehrenfeucht–Fräıssé game on Kk

and Kk+1, but the Spoiler wins the (k + 1)-move Ehrenfeucht–Fräıssé game
on Kk and Kk+1.

Example 2.7.6. For every m ≥ 1, let Lm be the linear order with m elements.
It is easy to see that for all positive integers m and n with m < n,

the Spoiler wins the 2-pebble game on Lm and Ln. In the first two moves,
the Spoiler places his two pebbles on the two smallest elements of Ln; it is
then in the best interests of the Duplicator to place his two pebbles on the
two smallest elements of Lm. In his next two moves, the Spoiler moves the
pebble from the smallest element of Ln and places it on the third smallest
element of Ln; the Duplicator has to follow suit with similar moves on Lm.
By continuing playing in this way, the Spoiler forces the placement of pebbles
with the same label on progressively bigger elements of the two linear orders.
Since m < n, eventually the Duplicator “runs out of elements” in Lm and
cannot duplicate the move of the Spoiler.

In view of Theorem 2.3.20, this example shows a dramatic difference
between the pebble games and the Ehrenfeucht–Fräıssé games, since for
every r and for all sufficiently large m and n, the Duplicator wins the r-move
Ehrenfeucht–Fräıssé game on Lm and Ln.

Example 2.7.7. For every m ≥ 3, let Am be a directed cycle with 2m nodes
and let Bm be the union of two disjoint directed cycles, each with m nodes,
as depicted in Fig. 2.10.

K4 K5

Fig. 2.9. Graphs illustrating the 4-pebble game and the 5-pebble game
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Fig. 2.10. The Spoiler wins the 3-pebble game on Am and Bm

It is easy to see that for every m ≥ 3, the Spoiler wins the 3-pebble game
on Am and Bm. In the first two moves, the Spoiler places his first pebble on
a node in the top cycle of Bm and his second pebble on a node in the bottom
cycle of Bm; thus, the Duplicator has to respond by placing his first two peb-
bles on elements of Am (presumably as far apart as possible). From this point
on, the Spoiler keeps his first pebble fixed in the top cycle, but uses his second
and third pebbles to force a walk along edges of the bottom cycle, in the same
way as the Spoiler moved from smaller to bigger elements in Example 2.7.6.
Eventually, the three pebbles of the Duplicator are lined up along adjacent
nodes in Am, but this does not hold for the pebbles of the Spoiler in Bm.

This example should be contrasted with the fact that, as implied by the
proof of Proposition 2.3.28, for every r ≥ 1 and for all sufficiently large values
of m, the Duplicator wins the r-move Ehrenfeucht–Fräıssé game on Am and
Bm.

We are now ready to present the connection between k-pebble games and
definability in the k-variable infinitary logics Lk∞ω, k ≥ 1.

Definition 2.7.8. Let k be a positive integer, and let A and B be two
σ-structures.

• We say that A is Lk∞ω-equivalent to B, denoted by A ≡k∞ω B, if A and
B satisfy the same Lk∞ω-sentences.

• We write A ≡kωω B to denote that A and B satisfy the same FOk-
sentences.
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• Let a1, . . . , ar be a sequence of elements from A and let b1, . . . , br be a
sequence of elements from B, for some r ≤ k. We say that (A, a1, . . . , ar)
is Lk∞ω-equivalent to (B, b1, . . . , br) if, for every Lk∞ω-formula ϕ(v1, . . . , vr)
with free variables among v1, . . . , vr, we have that

A |= ϕ(v1/a1, . . . , vr/ar) ⇐⇒ B |= ϕ(v1/a1, . . . , vr/br).

We write (A, a1, . . . , ar) ≡k∞ω (B, b1, . . . , br) to denote that (A, a1, . . . , ar)
is Lk∞ω-equivalent to (B, b1, . . . , br).

Clearly, ≡k∞ω is an equivalence relation on the class S of all σ-structures,
which we call Lk∞ω-equivalence. The next result asserts that Lk∞ω-equivalence
coincides with the equivalence relation that arises from the k-pebble game.
Here, we shall only outline the main ideas of the proof; complete details can
be found in [46].

Theorem 2.7.9. [8, 38] Let k be a positive integer, and let A and B be two
σ-structures. The following statements are then equivalent:

• A ≡k∞ω B.
• The Duplicator wins the k-pebble game on A and B.

Moreover, if A and B are finite, then the above statements are also
equivalent to

• A ≡kωω B.

Proof. (Outline) Assume first that A and B are two σ-structures such that
A ≡k∞ω B. We have to show that there is a family I of partial isomorphisms
on A and B that provides a winning strategy for Player II in the k-pebble
game, as described in Definition 2.7.4.

We take I to be the family of all partial isomorphisms f between A and
B such that the following hold:

• |f − {(cA1 , cB1 ), . . . , (cA1 , cBs )}| ≤ k.
• If a1, . . . , ar are elements in the domain of f other than the elements

cA1 , . . . , cAs interpreting the constant symbols, and b1 = f(a1), . . . , br =
f(ar) are their images under f , then (A, a1, . . . , ar) ≡k∞ω (B, b1, . . . , br).

To show that I is a winning strategy for the Duplicator, first note that I
is nonempty, because A ≡k∞ω B, and thus the function f with f(cAj ) = cBj ,
1 ≤ j ≤ s, is a member of I (if σ has no constant symbols, then I contains the
empty partial isomorphism). Moreover, I is clearly closed under subfunctions.
To show that I has the forth property up to k, it suffices to show that for
all r < k, if we have two sequences of distinct elements a1, . . . , ar in A and
b1, . . . , br in B such that

(A, a1, . . . , ar) ≡k∞ω (B, b1, . . . , br),
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then, for every element a in A that is different from a1, . . . , ar, there is an
element b in B that is different from b1, . . . , br and is such that

(A, a1, . . . , ar, a) ≡k∞ω (B, b1, . . . , br, b).

Assume that no such b ∈ B exists for a certain a ∈ A. Then, for every b ∈ B
that is different from b1, . . . , br, there is an Lk∞ω-formula ψb(v1, . . . , vr, v)
such that

(A, a1, . . . , ar, a) |= ψb(v1, . . . , vr, v)

and
(B, b1, . . . , br, b) �|= ψb(v1, . . . , vr, v).

Hence,

(A, a1, . . . , ar) |= (∃v)

(

(v1 �= v) ∧ · · · ∧ (vr �= v) ∧
∧

b∈B
ψb(v1, . . . , vr, v)

)

,

and, at the same time,

(B, b1, . . . , br) �|= (∃v)

(

(v1 �= v) ∧ · · · ∧ (vr �= v) ∧
∧

b∈B
ψb(v1, . . . , vm, v)

)

.

But this is a contradiction, since

(∃v)

(

(v1 �= v) ∧ · · · ∧ (vm �= v) ∧
∧

b∈B
ψb(v1, . . . , vm, v)

)

is an Lk∞ω-formula and (A, a1, . . . , ar) ≡k∞ω (B, b1, . . . , br). The back property
up to k is established in an analogous manner, using an infinitary conjunction
over elements of A. Note that if A and B are finite σ-structures, then these
conjunctions are actually finitary. Using this observation, we can mimic the
preceding argument with ≡kωω in place of ≡k∞ω in the definition of the winning
strategy I. It follows that if A and B are finite σ-structures satisfying the
same FOk-sentences, then the Duplicator wins the k-pebble game on A and B.

Conversely, let I be a winning strategy for the Duplicator in the k-pebble
game on A and B. We have to show that A and B satisfy the same
Lk∞ω-sentences. This is a consequence of the following stronger statement,
which can be proved by induction on the construction of Lk∞ω-formulas using
the closure and extension properties of I:

If ψ(v1, . . . , vr) is an Lk∞ω-formula whose variables are among v1, . . . , vk
and whose free variables are among v1, . . . , vr, then for all f ∈ I and for all
(not necessarily distinct) elements a1, . . . , ar from the domain of f , we have

A |= ψ(v1/a1, . . . , vr/ar) ⇐⇒ B |= ψ(v1/f(a1), . . . , vm/f(ar)).

�

As a consequence of Theorem 2.7.9, we obtain a characterization of
Lω∞ω-definability on classes of finite structures.
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Corollary 2.7.10. Let σ be a vocabulary, C a class of finite σ-structures,
and Q a Boolean query on C. The following statements are then equivalent:

1. Q is Lω∞ω-definable on C.
2. There is a positive integer k such that, for every structure A ∈ C and

every structure B ∈ C, if Q(A) = 1 and the Duplicator wins the k-pebble
game on A and B, then Q(B) = 1.

Proof. If Q is Lω∞ω-definable on C, then there is a positive integer k such that Q
is definable on C by some Lk∞ω-sentence θ. Theorem 2.7.9 implies that if A and
B are structures in C such that Q(A) = 1 and the Duplicator wins the k-pebble
game on A and B, then B |= θ, and hence Q(B) = 1. Note that the assumption
that C consists of finite structures has not been used in this direction.

For the other direction, assume that k is a positive integer with the
property that if A and B are structures in C such that Q(A) = 1 and
the Duplicator wins the k-pebble game on A and B, then Q(B) = 1. For
every structure A ∈ C, let ΨA be the set of all FOk-sentences ψ such that
A |= ψ. Note that ΨA is actually a countable set, because there are countably
many first-order formulas; consequently,

∧
ΨA is an Lk∞ω-sentence. Let

A1, . . . ,An, . . . be a list of representatives of all isomorphism types of struc-
tures A in C, with Q(A) = 1. Such a list is countable, since there are countably
many non-isomorphic finite structures. Using Theorem 2.7.9, it is easy to see
that the Lk∞ω-sentence

∨
{
∧
ΨAn : n ≥ 1} defines the query Q on C. �

Method 2.7.11. The Method of k-Pebble Games for Lω∞ω. Let σ be a
vocabulary, C a class of finite σ-structures, and Q a Boolean query on C.

Soundness. To show that Q is not Lω∞ω-definable on C, it suffices to show
that for every positive integer k, there are structures Ak and Bk in C
such that
• Q(Ak) = 1 and Q(Bk) = 0;
• the Duplicator wins the k-pebble game on Ak and Bk.

Completeness. This method is also complete, that is, if Q is not Lω∞ω-
definable on C, then for every positive integer k, such structures Ak and
Bk exist.

We note that the above method is sound for arbitrary classes of σ-
structures, not just classes of finite σ-structures. Moreover, it can be shown
that it is complete for classes of σ-structures of bounded cardinality. We now
present some applications of this method.

Proposition 2.7.12. Let G be the class of all finite graphs.

• The Even Cardinality query is not Lω∞ω-definable on G. Consequently,
the Even Cardinality query is neither LFP-definable nor PFP-definable
on G.
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• For every k ≥ 1, the query “does the graph contain a (k + 1)-clique?” is
not Lk∞ω-definable on G.

Proof. This is an immediate consequence of Example 2.7.5, Theorem 2.7.10,
and Theorem 2.7.2. �

Proposition 2.7.13. [16] The query Hamiltonian Path is not Lω∞ω-
definable on the class G of all finite graphs. Consequently, the query
Hamiltonian Path is neither LFP-definable nor PFP-definable on G.

Proof. For every m ≥ 1 and every n ≥ 1, let Km ×Cn be the product graph
of the totally disconnected m-node graph Km with the n-node cycle Cn, as
depicted in Fig. 2.11.

It is easy to see that Km ×Cn has a Hamiltonian Path if and only if
m ≤ n. This holds because, in order to visit two nodes of Km by traveling
along edges of Km ×Cn, one has to visit a node of Cn. Moreover, it is quite
clear that for every k ≥ 1, the Duplicator wins the k-pebble game on Kk×Ck

and Kk+1×Ck. Since Kk×Ck has a Hamiltonian Path, but Kk+1×Ck does
not, the conclusions follow immediately from Theorems 2.7.10, and 2.7.2. �

As an exercise, we invite the reader to apply Method 2.7.11 and show
that the Perfect Matching query is not Lω∞ω-definable on G. Note that,
using the same method, Dawar [14] showed that 3-Colorability is not
Lω∞ω-definable on G. This is a technically difficult result that requires the
construction of complicated graphs Ak and Bk, k ≥ 1, such that Ak is

Km × Cn

Fig. 2.11. Hamiltonian Path is not Lω∞ω-definable
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3-colorable, B is not 3-colorable, and the Duplicator wins the k-pebble game
on Ak and Bk. In contrast, 2-Colorability is Lω∞ω-definable on G; in fact,
it is L4

∞ω-definable, since Non-2-Colorability is definable by a Datalog
program with at most four variables in each rule, as shown in Example 2.6.20.

It should be pointed out that, although Method 2.7.11 can be used to
establish limitations on the expressive power of LFP and PFP on the class
G of all finite graphs, this method cannot be used to establish such results
on the class O of all finite ordered graphs. The reason for this is that every
query on O is L2

∞ω-definable, since the isomorphism type of every ordered
finite structure is definable by an FO2-sentence (this is an extension of the
fact that FO2 can express every fixed finite cardinality on linear orders). In
particular, Hamiltonian Path and 3-Colorability are L2

∞ω-expressible
on O. Consequently, Method 2.7.11 cannot be used to establish limitations
on the expressive power of LFP and PFP on the class O of all ordered finite
graphs; this is not surprising, since, as stated in Theorems 2.6.11 and 2.6.38,
LFP captures PTIME and PFP captures PSPACE on O.

Up to this point, k-pebble games have been used to establish mainly
negative results, that is, lower bounds for definability in Lω∞ω and, a fortiori,
lower bounds for definability in LFP and in PFP. These games, however,
can also be used to establish positive results in the form of structural
properties of Lω∞ω, which, in many cases, are inherited by LFP and PFP.
Moreover, k-pebble games can be used to unveil certain deeper connections
between LFP and Lω∞ω. As will be seen in the remainder of this section,
all these results involve an in-depth study of the family of the equivalence
relations ≡k∞ω, k ≥ 1, using k-pebble games.

2.7.3 0–1 Laws for Lω
∞ω

A major direction of research in finite model theory has focused on the study
of the asymptotic probabilities of queries on classes of finite structures. This
is the topic of Chap. 4 of this volume. Here, we present a brief overview of
0–1 laws for the infinitary logic Lω∞ω.

Definition 2.7.14. Let σ be a vocabulary, C a class of finite σ-structures,
and Q a Boolean query on C.
• For every n ≥ 1, we write Cn to denote the subclass of C consisting of all

structures A in C with universe {1, . . . , n}.
• For every n ≥ 1, let μn be a probability measure on Cn.

– We write μn(Q) to denote the probability of the query Q on Cn with
respect to the measure μn, n ≥ 1.

– The asymptotic probability μ(Q) of the query Q with respect to the
family of measures μn, n ≥ 1, is defined as

μ(Q) = lim
n→∞μn(Q),

provided the limit exists.
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Of all measures on classes of finite structures, the uniform measure is the
most well-studied one. More precisely, if C is a class of finite σ-structures and Q
is a Boolean query on C, then the value μn(Q) of the uniform measure is equal
to the fraction of structures in Cn that satisfy the query Q, n ≥ 1. Combinato-
rialists have studied in depth the asymptotic probabilities of queries on finite
graphs with respect to the uniform measure. For instance, it is well known that
μ(4-Regular) = 0, μ(2-Colorability) = 0, and μ(Hamiltonian Path) =
1. Note, however, that μ(Even Cardinality) does not exist, since we have
that μ2n(Even Cardinality) = 1 and μ2n+1(Even Cardinality) = 0.

In the late 1960s and early 1970s, researchers raised the question of
whether there was a connection between the definability of a query Q in some
logic and its asymptotic probability with respect to a given measure. The next
definition captures a case in which such a connection exists, and it is tight.

Definition 2.7.15. Let L be a logic, let σ be a vocabulary consisting of
relation symbols only, let C be a class of finite σ-structures, and let μn, n ≥ 1,
be a family of measures on Cn.

We say that L has a 0–1 law on C with respect to μn, n ≥ 1, if for every
L-definable query Q on C, we have that μ(Q) = 0 or μ(Q) = 1.

Note that the presence of constant symbols causes a failure of the 0–1
law for first-order logic with respect to the uniform measure. Indeed, if σ is
a vocabulary containing a constant symbol c and a unary relation symbol
P , then it is quite easy to verity that μ(P (c)) = 1/2. This explains why,
in Definition 2.7.15, it was assumed that the vocabulary consists of relation
symbols only.

Over the years, there has been an extensive investigation of 0–1 laws
for various logics with respect to the uniform measure on classes of finite
σ-structures and, in particular, on the class F of all finite σ-structures. This
investigation started with the independent discovery by Glebskii et al. [31]
and Fagin [23] that first-order logic FO has a 0–1 law with respect to the
uniform measure on the class F of all finite σ-structures. After this, Blass,
Gurevich, and Kozen [9] showed that least fixed-point logic LFP has a 0–1 law
with respect to the uniform measure on F , and Kolaitis and Vardi [44] showed
that partial fixed-point logic PFP has a 0–1 law with respect to the uniform
measure on F . These 0–1 laws for progressively more expressive logics turned
out to be special cases of the 0–1 law for the infinitary logic Lω∞ω with respect
to the uniform measure on F , a result established by Kolaitis and Vardi [46].

Theorem 2.7.16. Let σ be a vocabulary consisting of relation symbols only.
The finite-variable infinitary logic Lω∞ω then has a 0–1 law with respect to
the uniform measure on the class F of all finite σ-structures.

Proof. (Hint) For every k ≥ 1, let θk be the conjunction of all extension
axioms for σ with at most k variables, that is, the conjunction of all
FOk-sentences that assert that every substructure with fewer than k elements
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has an extension to a substructure with k elements. Fagin [23] showed that
μ(θk) = 1, where μn is the uniform measure on Fn, n ≥ 1. Let Ak be a model
of θk, and let [Ak]≡k∞ω

= {B ∈ F : Ak ≡k∞ω B} be the ≡k∞ω-equivalence class
of Ak. Using the characterization of ≡k∞ω via k-pebble games in Theorem
2.7.9, it can be shown that [Ak]≡k∞ω

= {B ∈ F : B |= θk}. Consequently,
μ([Ak]≡k∞ω

) = 1, which easily implies that the 0–1 law holds for the k-variable
infinitary logic Lk∞ω. �

Since the asymptotic probability of the Even Cardinality query does
not exist, Theorem 2.7.16 gives another proof that Even Cardinality is
not Lω∞ω-definable on the class F of all finite σ-structures.

The next result characterizes when a 0–1 law holds for the k-variable
infinitary logics Lk∞ω , k ≥ 1, on a class of finite structures with respect to an
arbitrary measure.

Theorem 2.7.17. Let σ be a vocabulary consisting of relation symbols only,
let C a class of finite σ-structures, and let μn be a measure on Cn, n ≥ 1.
Then, for every positive integer k, the following two statements are equivalent:

1. The k-variable infinitary logic Lk∞ω has a 0–1 law with respect to μn,
n ≥ 1, on C.

2. There is an equivalence class D of ≡k∞ω on C such that μ(D) = 1.

In effect, Theorem 2.7.17 reveals that Lk∞ω has a 0–1 law if and only if
there is a “giant” Lk∞ω-equivalence class; all other Lk∞ω-equivalence classes
must have an asymptotic probability equal to 0. Moreover, the existence of
a 0–1 law for Lk∞ω can be established using k-pebble games.

As described in Chap. 4, Shelah and Spencer [61] investigated 0–1 laws
for first-order logic FO on the class G of all finite graphs under nonuniform
measures on Gn of the form p(n) = n−α, where α is a fixed real number.
Their main finding was that for all real α ∈ (0, 1), FO has a 0–1 law on G
with respect to the measures p(n) = n−α if and only if α is an irrational
number. It follows that if α ∈ (0, 1) is rational, then the 0–1 law fails for
the finite-variable infinitary logic Lω∞ω on G with respect to the measures
p(n) = n−α. Moreover, McArthur [52] showed that the 0–1 law also fails
for Lω∞ω on G with respect to the measures p(n) = n−α when α ∈ (0, 1) is
irrational. Thus, the 0–1 law fails for Lω∞ω on G with respect to every measure
of the form p(n) = n−α, where 0 < α < 1.

2.7.4 Definability and Complexity of Lk
∞ω-Equivalence

If L is a logic and σ is a vocabulary, then two σ-structures A and B are
L-equivalent if they satisfy the same L-sentences. The concept of
L-equivalence gives rise to the following decision problem: given two
finite σ-structures A and B, are they L-equivalent? Strictly speaking, this
decision problem is not a query on finite structures, since, according to
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Definition 2.2.1, queries take single structures, not pairs of structures, as
inputs. It is easy, however, to view this decision problem as a query on
an expanded vocabulary σ1 + σ2 that consists of two disjoint copies of the
relation and constant symbols in the vocabulary σ together with two unary
predicates D1 and D2. Using the vocabulary σ1 + σ2, a pair (A,B) of two
σ-structures A and B is identified with a single σ1 + σ2-structure A + B
defined as follows: the universe of A + B is the union A ∪B of the universes
of A and B, the relation symbol D1 is interpreted by the universe A of
A, the relation symbol D2 is interpreted by the universe B of B, and the
remaining relation and constant symbols of σ1 + σ2 are interpreted by the
corresponding relations and constants of A and B. This encoding makes it
possible to formally view queries on pairs of σ-structures as queries on single
σ1 + σ2-structures.

Note that FO-equivalence coincides with the Isomorphism Problem,
since the isomorphism type of every finite σ-structure is FO-definable; as
a result, FO-equivalence is not FO-definable. The same line of reasoning
shows that Lω∞ω-equivalence is not Lω∞ω-definable. In what follows, we
shall investigate the logical definability and computational complexity of
Lk∞ω-equivalence, k ≥ 1.

Using Theorem 2.7.9 and the infinitary syntax of Lk∞ω, it is easy to see
that Lk∞ω-equivalence is Lk∞ω-definable, k ≥ 1. Indeed, as in the proof of
Theorem 2.7.10, for every finite σ-structure A, let ΨA be the conjunction of
all FOk-sentences satisfied by A; clearly, ΨA is an Lk∞ω-sentence. Note that
for every Lk∞ω-sentence Ψ , there are Lk∞ω-sentences Ψ1 and Ψ2 over σ1 + σ2

such that for all σ-structures A and B, the following hold:

• A + B |= Ψ1 if and only if A |= Ψ .
• A + B |= Ψ2 if and only if B |= Ψ .

Finally, let A1, . . . ,An, . . . be a list of representatives of all isomorphism
types of finite σ-structures. Then Lk∞ω-equivalence on σ is definable by the
Lk∞ω-sentence ∨

{(Ψ1
Ai
∧ Ψ2

Ai
) : i ≥ 1}.

The preceding construction shows that Lk∞ω is powerful enough to express
its own equivalence, but provides no information about the computa-
tional complexity of Lk∞ω-equivalence. Nonetheless, the characterization
of Lk∞ω-equivalence in terms of k-pebble games can be used to show that
Lk∞ω-equivalence is LFP-definable and, thus, it is also polynomial-time
computable. This result, whose proof is outlined next, was obtained
by Dawar, Lindell and Weinstein [15] and by Kolaitis and Vardi [45]
independently.

Proposition 2.7.18. Let σ be a vocabulary and k a positive integer. There
is then a positive first-order formula ϕ(x1, . . . , xk, y1, . . . , yk, S) over the
vocabulary σ1 + σ2 such that the least fixed point ϕ∞(x1, . . . , xk, y1, . . . , yk)



2.7 Infinitary Logics with Finitely Many Variables 101

of this formula defines the query “given two σ-structures A, B and two
k-tuples (a1 . . . , ak) ∈ Ak and (b1, . . . , bk) ∈ Bk, is (A, a1, . . . , ak) �≡k∞ω

(B, b1 . . . , bk)?”
Consequently, for each k ≥ 2, Lk∞ω-equivalence is LFP-definable.

Proof. From the proof of Theorem 2.7.9, it follows that (A, a1, . . . , ak) �≡k∞ω

(A, b1 . . . , bk) if and only if the Spoiler wins the k-pebble game on A and
B starting with the configuration (a1, . . . , ak, b1, . . . , bk), that is, the Spoiler
wins the k-pebble game when the game begins with pebbles of the same label
placed on ai and bi, i = 1, . . . , k. The latter statement is definable by the least
fixed point ϕ∞ of a positive first-order formula ϕ(x1, . . . , xk, y1, . . . , yk, S) over
the vocabulary σ1 +σ2 with a total of 2k distinct variables, which, intuitively,
asserts that the Spoiler wins in the initial configuration or in the “next”
move of the game. More precisely, ϕ(x1, . . . , xk, y1, . . . , yk, S) is the formula

χ(x1, . . . , xk, y1, . . . , yk) ∨ (∨ki=1ψi(x1, . . . , xk, y1, . . . , yk, S)),

where

• χ is a quantifier-free formula stating that xi ∈ D1, yi ∈ D2, for
i = 1, . . . , k, and the substructures generated by {x1, . . . , xk} and
{y1, . . . , yk} are not isomorphic;

• ψi is the formula

(∃xi ∈ D1)(∀yi ∈ D2)S(x1, . . . , xk, y1, . . . , yk)∨

(∃yi ∈ D2)(∀xi ∈ D1)S(x1, . . . , xk, y1, . . . , yk). �

Proposition 2.7.18 implies that for every k ≥ 2, Lk∞ω-equivalence is
in P. Grohe [34] established the following matching lower bound for the
computational complexity of Lk∞ω-equivalence.

Theorem 2.7.19. Let σ be a vocabulary containing at least one binary
relation symbol. For each positive integer k ≥ 2, the following problem is
P-complete: given two finite σ-structures A and B, does the Duplicator win
the k-pebble game on A and B?

Consequently, for each k ≥ 2, Lk∞ω-equivalence is P-complete.

This result can be proved via an intricate reduction from the Monotone

Circuit Value Problem. Note that it provides a sharp contrast between the
k-pebble game and the r-move Ehrenfeucht–Fräıssé game, since, by Theorem
2.4.4, for each fixed r ≥ 1, determining the winner in the r-move Ehrenfeucht–
Fräıssé game is solvable in logarithmic space (and, hence, it is unlikely to be
P-complete). Note that if the number k of pebbles is also part of the input,
then determining the winner in the k-pebble game is solvable in exponential
time. It has been conjectured, but has not been proved, that this upper
bound is tight, which means that the following query is EXPTIME-complete:
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given a positive integer k and two finite σ-structures A and B, does the
Duplicator win the k-pebble game on A and B? This would complement
Theorem 2.4.5 to the effect that, when the number r of moves is part of the
input, determining the winner in the r-move Ehrenfeucht–Fräıssé game is a
PSPACE-complete problem.

For every finite σ-structure B, let [B]k∞ω be the Lk∞ω-equivalence class of
B on finite σ-structures, that is,

[B]k∞ω = {A ∈ F : A ≡k∞ω B}.

Clearly, [B]k∞ω can also be viewed as a Boolean query Qk
B on the class F of all

finite σ-structures: given a finite σ-structure A, is A ≡k∞ω B? For every finite
σ-structure B and every k-tuple b from B, we can also consider the related
k-ary query Qk

B,b on F such that, given a finite σ-structure A, we have that

Qk
B,b(A) = {a ∈ Ak : (A, a) ≡k∞ω (B,b)}.

Theorem 2.7.9 implies that the query Qk
B is definable by the Lk∞ω-sentence∧

ΨB, where, as earlier, ΨB is the set of all FOk-sentences satisfied by B.
Similarly, each query Qk

B,b is Lk∞ω-definable as well. Dawar, Lindell, and
Weinstein [15] established a much stronger result by showing that all queries
Qk

B and Qk
B,b are actually FOk-definable. This was achieved via a careful

adaptation to Lk∞ω of Scott’s theorem [60] to the effect that the isomorphism
type of every countable structure is definable in the infinitary logic Lω1ω .
Here, we outline a different proof, which was given in [49]. As a stepping
stone, we first establish the following result.

Proposition 2.7.20. Let B be a finite σ-structure and let b1, . . . ,bl be an
enumeration of all k-tuples from B. For every positive integer k, there is
a system SB = (ϕB,bi(x1, . . . , xk, Tb1 , . . . , Tbl), 1 ≤ i ≤ l) of FOk-formulas
that are positive in Tb1 , . . . , Tbl and have the property that ϕ∞

B,bi
(x1, . . . , xk)

defines the complement of the query Qk
B,bi

, 1 ≤ i ≤ l. Thus, for every finite
σ-structure A and every k-tuple a from A,

(A,a) ≡k∞ω (B,b) ⇐⇒ A, a |= ¬ϕ∞
B,bi(x1, . . . , xk).

Proof. (Outline) For every i ≤ l, let χB,bi(x1, . . . , xk) be the conjunc-
tion of all atomic or negated atomic formulas η(x1, . . . , xk) such that
B,bi |= η(x1, . . . , xk). Moreover, for every j such that 1 ≤ j ≤ k and every
element b from the universe of B, let bi[j/b] be the k-tuple obtained from the
k-tuple bi = (bi1, . . . , b

i
k) by replacing bij by b. We then consider the system

SB = (ϕB,bi , 1 ≤ i ≤ l), where ϕB,bi(x1, . . . , xk, Tb1 . . . , Tbl) is the formula

¬χB,bi(x1, . . . , xk) ∨ [
k∨

j=1

(∃xj)
∧

b∈B
Tbi[j/b](x1, . . . , xk)] ∨

[
k∨

j=1

∨

b∈B
(∀xj)Tbi[j/b](x1, . . . , xk)].



2.7 Infinitary Logics with Finitely Many Variables 103

By induction on m simultaneously for all i ≤ l, it can be shown that on
every σ-structure A the component ΦmB,bi , 1 ≤ i ≤ l, of the mth stage of the
system SB consists of all k-tuples a from A such that the Spoiler can win
the k-pebble game on (A,a) and (B,b) within m rounds. �

By combining Theorem 2.7.2 with Proposition 2.7.20, we can now obtain
the result of Dawar, Lindell, and Weinstein [15] to the effect that every
≡k∞ω-equivalence class is FOk-definable.

Theorem 2.7.21. Let k be a positive integer, B a finite σ-structure, and b
a k-tuple from B.

• The k-ary query Qk
B,b is definable by some FOk-formula θB,b(x1, . . . , xk).

• The Boolean query Qk
B is definable by some FOk-sentence θB of FOk.

In other words, for each fixed positive integer k and each fixed finite
σ-structure B, the following query is FOk-definable: “Given a finite
σ-structure A, does the Duplicator win the k-pebble game on A and B?”

Proof. (Outline) Let b1, . . . ,bl be an enumeration of all k-tuples from the
universe of B and let SB = (ϕB,bi , 1 ≤ i ≤ l), be the system of positive
FOk-formulas used in the proof of Theorem 2.7.20. Theorem 2.7.2 implies that
for every i ≤ l and every m ≥ 1, there is an FOk-formula ϕmB,bi(x1, . . . , xk)
that defines the component ΦmB,bi of the mth stage of this system.

Let us now apply the system SB to the structure B itself. There is then
a positive integer m0 such that on B, the least fixed point of this system is
equal to its m0th stage, that is, for every i ≤ l,

B |= (∀x1 . . .∀xk)[ϕm0
B,bi

(x1, . . . , xk) ↔ ϕm0+1
B,bi

(x1, . . . , xk)].

It can then be shown that the query Qk
B,b is definable by the following

FOk-formula θB,b(x1, . . . , xk):

¬ϕm0
B,b(x1, . . . , xk)∧ [

l∧

i=1

(∀x1. . .∀xk)(ϕm0
B,bi

(x1, . . . , xk) ↔ ϕm0+1
B,bi

(x1, . . . , xk))].

Finally, the query Qk
B is definable by the FOk-sentence

(∃x1 . . . ∃xk)(
l∨

i=1

θB,bi(x1, . . . , xk)). �

Theorem 2.7.21 yields the following normal form for Lk∞ω-definability on
finite structures, k ≥ 1, a result due to Dawar, Lindell, and Weinstein [15].

Corollary 2.7.22. Let σ be a vocabulary and k a positive integer. For every
Lk∞ω-sentence ψ, there are FOk-sentences ψm, m ≥ 1, such that for every
finite σ-structure A, we have that

A |= ψ ⇐⇒ A |=
∞∨

i=1

ψm.
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Proof. The class of finite σ-structures that satisfy ψ is equal to the union of
all ≡k∞ω-equivalence classes of finite σ-structures that satisfy ψ. Thus, the
desired sentences ψm are the FOk-sentences θB, where B varies over all finite
σ-structures that satisfy ψ. �

Since Lk∞ω and FOk are closed under negations, we also have that on
the class of all finite σ-structures, every Lk∞ω-sentence is equivalent to a
countable conjunction of FOk-sentences. Thus, the expressive power of Lk∞ω

on finite structures reduces to a single application of infinitary disjunction or
infinitary conjunction to a countable set of FOk-sentences.

2.7.5 Least Fixed-Point Logic vs. Partial Fixed-Point Logic
on Finite Structures

We now take a closer look at the relationship between least fixed-point
logic LFP and partial fixed-point logic PFP on finite structures. Since every
LFP-formula is also a PFP-formula, we have that on the class F of all finite
σ-structures, LFP(F) ⊆ PFP(F). Recall that Theorem 2.6.11 asserts that on
the class O of all ordered finite σ-structures, we have that LFP(O) = P(O);
moreover, Theorem 2.6.38 asserts that PFP(O) = PSPACE(O). Conse-
quently, LFP(O) �= PFP(O) if and only if P �= PSPACE. Thus, showing
that PFP has strictly higher expressive power than LFP on the class O of
all ordered finite σ-structures amounts to resolving one of the outstanding
open problems in computational complexity. Chandra and Harel [11] raised
the question of how LFP and PFP compare in terms of expressive power on
F and conjectured that LFP(F) �= PFP(F). Initially, researchers in finite
model theory speculated that this conjecture was not equivalent to any open
problem in complexity theory; moreover, they felt that it would be possible
to confirm it using existing techniques. To justify this intuition, recall that,
by Fagin’s Theorem (Theorem 2.4.7), ESO = NP on every class C of finite
σ-structures. Consequently, showing that LFP(O) �= ESO(O) amounts to
establishing that P �= NP. In contrast, LFP(F) �= ESO(F), since, as shown in
this section, the Even Cardinality query is not LFP-definable on F , but,
of course, it is ESO-definable on F . Similarly, PFP(F) �= ESO(F), since the
Even Cardinality query is not PFP-definable on F . So, it seems plausible
that one could separate LFP from PFP on F by introducing suitable com-
binatorial games that would make it possible to differentiate between these
two fixed-point logics on F ; of course, these games would have to be different
from the k-pebble games, k ≥ 1, since k-pebble games capture definability
in the finite-variable infinitary logic Lω∞ω, which subsumes both LFP and
PFP on classes of finite structures. It turned out, however, that this intuition
was wrong. Indeed, a decade after Chandra and Harel [11] formulated
their conjecture, Abiteboul and Vianu [3] established that the separation of
LFP from PFP on the class F of all finite σ-structures is literally equivalent
to the separation of P from PSPACE. In what follows, we shall highlight
some of the key ideas that go into the proof of this result. For a complete
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proof, we refer the reader to the paper by Abiteboul and Vianu [3] and to
the subsequent excellent exposition by Dawar, Lindell, and Weinstein [15].

Definition 2.7.23. Let σ be a vocabulary and k a positive integer.

• If A is a finite σ-structure and a is a k-tuple of elements of A, then the
k-type of a on A is the collection of all Lk∞ω-formulas ϕ(x) such that
A |= ϕ(a).

• If A is a finite σ-structure and a, b are two k-tuples of elements of A, then
we write A ≡k,A∞ω b to denote that a and b have the same k-type on A.

As we have seen, LFP cannot express the Even Cardinality query
on F , but it can express every polynomial-time-computable query on O.
It follows that no LFP-formula ψ(x, y) exists such that for every finite
σ-structure A, this formula defines a linear order on the universe A of A. In
contrast, Abiteboul and Vianu [3] showed that, for every k ≥ 1, there is an
LFP-formula such that, for every finite σ-structure A, this formula defines
(in a sense that has to be made precise) a linear order on the set of the
equivalence classes of the equivalence relation ≡k,A∞ω .

By definition, a linear preorder on a set B is a binary relation  on B
that is reflexive and transitive, and has the property that, for every b1 and
b2 in B, we have that b1  b2 or b2  b1. Every linear preorder  gives rise
to an equivalence relation ≡ defined by the condition: b1 ≡ b2 if and only if
b1  b2 and b2  b1. Moreover,  induces a linear order, also denoted by  ,
on the quotient set B/ ≡ of the equivalence classes of ≡, where [b1]≡  [b2]≡
if and only if b1  b2. The next theorem is the key technical result in [3];
here, we shall give a hint of a different proof that was presented in [15].

Theorem 2.7.24. Let σ be a vocabulary and F the class of all finite
σ-structures. For every positive integer k, there is an LFP-definable 2k-ary
query Qk on F such that for every finite σ-structure A, the value Qk(A) of
this query on A is a linear preorder on Ak whose induced equivalence relation
coincides with the equivalence relation ≡k,A∞ω of k-types on A.

Proof. (Hint) Using the characterization of Lk∞ω-equivalence in terms of
k-pebble games, it is possible to design a color-refinement algorithm such
that on every finite σ-structure A, it inductively preorders all k-tuples from
A according to their k-type on A. This algorithm is naturally expressed
in inflationary fixed point logic IFP, which, as shown by Gurevich and
Shelah [35], has the same expressive power as LFP on the class of all finite
σ-structures (see also Chap. 3 for additional information on IFP). �

We can finally present Abiteboul and Vianu’s surprising resolution of
Chandra and Harel’s conjecture.

Theorem 2.7.25. [3] Let σ be a vocabulary and F the class of all finite
σ-structures. The following statements are then equivalent:

1. LFP(F) = PFP(F).
2. P = PSPACE.
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Proof. (Hint) Assume first that LFP(F) = PFP(F). As seen in Exam-
ple 2.6.36, PFP can express PSPACE-complete queries on F . Therefore,
such queries are LFP-definable on F . Since every LFP-definable query is
polynomial-time computable, it follows that PSPACE ⊆ P.

For the other direction, assume that P = PSPACE. We have to show that
LFP(F) = PFP(F). This will require essentially all the machinery we have
developed in this section. Fix a positive integer k. If A is a finite σ-structure,
then the equivalence relation ≡k,A∞ω induces a quotient structure A/ ≡k,A∞ω

whose universe consists of the equivalence classes [a]≡k,A
∞ω

of k-tuples from A.
Let

F/ ≡k∞ω= {A/ ≡k,A∞ω : A ∈ F}

be the class of all these quotient structures. Theorem 2.7.24 implies that
there is an LFP-definable query that defines a linear order on the universe of
every quotient structure A/ ≡k,A∞ω in F/ ≡k∞ω. Consequently, LFP(F/ ≡k∞ω)
= P(F/ ≡k∞ω). We can now use transfer properties between F and F/ ≡k∞ω

to show that PFP(F) ⊆ LFP(F), as indicated in the diagram below:

ϕ ∈ PFP(F) ≡ ψ ∈ LFP(F)⏐
⏐
�

�
⏐
⏐

ϕ∗ ∈ PFP(F/ ≡k∞ω) ≡ ψ∗ ∈ LFP(F/ ≡k∞ω)

Specifically, assume that Q is a query on F definable by a PFP-formula
ϕ with k distinct variables. The formula ϕ can be “transformed” to a
PFP-formula ϕ∗ over the vocabulary of the quotient structures, so that ϕ∗

defines the “transformation” of the query Q to a query Q∗ on F/ ≡k∞ω. Since
Q∗ is PFP-definable on F/ ≡k∞ω, it is polynomial-space computable. The
hypothesis PSPACE = P implies that Q∗ is polynomial-time computable,
and hence Q∗ is LFP-definable on F/ ≡k∞ω. Let ψ∗ be an LFP-formula
that defines Q∗ on F/ ≡k∞ω. We can now “pull back” ψ∗ and obtain an
LFP-formula ψ that defines the query Q on F . Thus, PFP(F) ⊆ LFP(F). �

Thus, the difference in computational power between polynomial-time
and polynomial-space computations, if any, amounts to the difference in
expressive power between least fixed points and partial fixed points of
first-order formulas on the class of all finite structures.

2.8 Existential Infinitary Logics with Finitely
Many Variables

In Sect. 2.7, we saw that the finite-variable infinitary logics Lk∞ω and the
k-pebble games, k ≥ 1, provide powerful tools for analyzing the expressive
power of least fixed-point logic LFP. Our goal in this section is to develop
a similar methodology for analyzing the expressive power of the existential
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fragment of LFP and, in particular, the expressive power of Datalog and
Datalog(�=). To this effect, we shall introduce finite-variable existential
infinitary logics and certain asymmetric pebble games that turn out to be
tailored for the study of Datalog and Datalog(�=).

2.8.1 The Infinitary Logics ∃Lk
∞ω and ∃Lk

∞ω(�=)

Informally, an existential finite-variable infinitary logic is a fragment of Lω∞ω

in which the rules for constructing formulas do not include applications
of universal quantification or negation. These fragments can be further
differentiated depending on whether the basic formulas include negated
equalities or negated atomic formulas. We now formally define two of these
fragments, originally introduced by Kolaitis and Vardi [47].

Definition 2.8.1. Let σ be a vocabulary.

• For every positive integer k, we write ∃Lk∞ωto denote the collection of
all L∞ω-formulas that have at most k distinct variables and are obtained
from atomic formulas (which may be equality statements) using existential
quantification, infinitary conjunction, and infinitary disjunction. We
write ∃FOkto denote the collection of all first-order ∃Lk∞ω-formulas.

• The finite-variable existential infinitary logic ∃Lω∞ω is the union of all
∃Lk∞ω’s, that is,

∃Lω∞ω =
∞⋃

k=1

∃Lk∞ω.

• For every positive integer k, we write ∃Lk∞ω(�=) to denote the collection of
all L∞ω-formulas that have at most k distinct variables and are obtained
from atomic formulas and negated equality statements (that is, formulas of
the form t1 �= t2, where t1, t2 are among the k variables and the constant
symbols of σ), using existential quantification, infinitary conjunction, and
infinitary disjunction. We write ∃FOk(�=) to denote the collection of all
first-order ∃Lk∞ω(�=)-formulas.

• The finite-variable existential infinitary logic ∃Lω∞ω(�=) is the union of all
∃Lk∞ω(�=)’s, that is,

∃Lω∞ω(�=) =
∞⋃

k=1

∃Lk∞ω(�=).

As an example, the expression

(∃z)(E(x, z) ∧ (∃x)(x = z ∧ (∃z)(E(x, z) ∧ E(z, y))))

is an ∃FO3-formula that defines the query “there is a path of length 3 from x
to y”. Actually, for every m ≥ 1, the query “there is a path of length m from
x to y” is ∃FO3-definable. This is a special case of a result concerning the
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relationship between Datalog and ∃Lω∞ω. Before stating this result in precise
terms, we need to introduce a parametrization of Datalog programs based on
the number of variables occurring in the rules.

For every positive integer k, let k-Datalog be the collection of all Datalog
programs in which the body of every rule has at most k distinct variables
and also the head of every rule has at most k variables (the variables of
the body may be different from the variables of the head). For instance,
the Non-2-Colorability query is expressible in 4-Datalog, since, as seen
in Example 2.6.20, it is definable by the goal predicate Q of the Datalog
program below, which asserts the existence of a cycle of odd length:

∣
∣
∣
∣
∣
∣

O(x, y) : − E(x, y)
O(x, y) : − E(x, z), E(z, w), O(w, y)
Q : − O(x, x)

A complete proof of the next result can be found in [50].

Theorem 2.8.2. Let σ be a vocabulary, k a positive integer, and

φ1(x1, . . . , xn1 , S1, . . . , Sl), . . . , φl(x1, . . . , xnl , S1, . . . , Sl)

a system of positive ∃FOk-formulas over the vocabulary σ ∪ {S1, . . . , Sl}. The
following statements are then true for the above system and for the operator
Φ associated with it:

• For every m ≥ 1, each component Φmi , 1 ≤ i ≤ l, of the stage
Φm = (Φm1 , . . . , Φml ) is ∃FOk-definable on the class S of all σ-structures.

• Each component φ∞
i , 1 ≤ i ≤ l, of the least fixed point (φ∞

1 , . . . , φ∞
l ) of

the system is ∃FOk-definable on the class of all σ-structures.

Consequently, every query definable by a k-Datalog program on the class S of
all σ-structures is also ∃Lk∞ω-definable on S. In symbols,

k-Datalog(S) ⊆ ∃Lk∞ω(S).

Proof. (Hint) This result can be proved by induction on m simultaneously
for all i ≤ l. As was the case with Theorem 2.7.2, the key idea is to reuse
variables judiciously. Some additional technical difficulties arise from the
limited syntax of ∃Lk∞ω. These are overcome by using the following closure
property of ∃FOk-definable queries, which has to be established separately:

If Q is an ∃FOk-definable query and π : {1, . . . , k} �→ {1, . . . , k} is a func-
tion, then the query Qπ is also ∃FOk-definable, where, for every σ-structure
A and every sequence (a1, . . . , ak) of elements from the universe of A,

(a1, . . . , ak) ∈ Qπ(A) ⇐⇒ (aπ(1), . . . , aπ(k)) ∈ Q(A).

By refining the proof of Proposition 2.6.21, it can be shown that
every query definable by a k-Datalog program is also definable by the
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least fixed point of a system of positive ∃FOk-formulas. Consequently,
k-Datalog(S) ⊆ ∃Lk∞ω(S). �

A result similar to Theorem 2.8.2 can be established about the relationship
between k-Datalog(�=) and ∃Lω∞ω(�=).

Theorem 2.8.3. Let k be a positive integer. Every query definable by a
k-Datalog(�=) program on the class S of all σ-structures is also ∃Lk∞ω(�=)-
definable on S.

It should be pointed out that on the class F of all finite σ-structures,
k-Datalog is properly contained in ∃Lω∞ω, since the latter can express queries
that are not computable. Similarly, k-Datalog(�=) is properly contained in
∃Lω∞ω(�=) on F .

The preservation properties of Datalog and Datalog(�=) in Propo-
sitions 2.6.23 and 2.6.26 extend to ∃Lω∞ω and ∃Lω∞ω(�=). Specifically,
every ∃Lω∞ω-definable query is preserved under homomorphisms and every
∃Lω∞ω-definable query is preserved under one-to-one homomorphisms. These
preservation properties give rise to sufficient, but not necessary, conditions for
inexpressibility in ∃Lω∞ω or in ∃Lω∞ω(�=). In what follows, we shall introduce
a variant of pebble games that can actually characterize definability in these
two infinitary logics.

2.8.2 Existential Pebble Games

The k-pebble game is a symmetric game, in the sense that the Duplicator
wins the k-pebble game on A and B if and only if (s)he wins the k-pebble
game on B and A. This is a consequence of the following two properties of
the k-pebble game:

1. In each move of the game, the Spoiler can choose either of the two
structures, and place a pebble on or remove a pebble from that structure.

2. The payoff condition is that the substructures generated by the pebbled
elements must be isomorphic.

Thus, we can reverse the order of A and B without affecting the winner of the
k-pebble game. We are interested in games that can characterize definability
in the k-variable existential infinitary logics ∃Lk∞ω , k ≥ 1. A closer scrutiny
of the relationship between k-pebble games and Lk∞ω reveals that moves
of the Spoiler on the structure B correspond to universal quantification in
Lk∞ω-formulas. This suggests that games for ∃Lk∞ω should be such that the
Spoiler is limited to always playing on A (and the Duplicator is limited to
always playing on B). Moreover, the payoff condition should be modified
appropriately to take account of the absence of negation and universal
quantification in ∃Lk∞ω. These considerations led to the introduction of
existential k-pebble games in [50].
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Definition 2.8.4. Let k be a positive integer, σ a vocabulary, and A and B
two σ-structures. The (∃, k)-pebble game on A and B is played between two
players, called the Spoiler and the Duplicator, each of whom has k pebbles
that are labeled 1, . . . , k. In each move, the Spoiler either places a pebble
that is not currently used on an element of A or removes a pebble from
an element of A. The Duplicator responds by either placing the pebble with
the same label on an element of B or by removing the pebble with the same
label from an element of B. Assume that at some point in time during the
game, r pebbles have been placed on each structure, where 1 ≤ r ≤ k, and let
(ai, bi) ∈ A × B, 1 ≤ i ≤ r, be the pairs of elements of A and B such that
the label of the pebble on ai is the same as the label of the pebble on bi.

The Spoiler wins the (∃, k)-pebble game on A and B at this point in time
if the mapping ai �→ bi, 1 ≤ i ≤ r, is not a homomorphism between the sub-
structures of A and B generated by {a1, . . . , ar} and {b1, . . . , br}, respectively.

The Duplicator wins the (∃, k)-pebble game on A and B if the above never
happens, which means that the Duplicator has a winning strategy that allows
him to continue playing “forever” by maintaining a partial homomorphism
at every point in time.

The (∃, �=, k)-pebble game on A and Bis defined in an entirely analogous
way, with the exception that the payoff condition for the Duplicator is that the
mapping ai �→ bi, 1 ≤ i ≤ r, is a one-to-one homomorphism between the sub-
structures of A and B generated by {a1, . . . , ar} and {b1, . . . , br}, respectively.

The concept of a winning strategy for the Duplicator in the (∃, k)-pebble
game and the (∃, �=, k)-pebble game can be made precise in terms of families
of partial homomorphisms or partial one-to-one homomorphisms with
appropriate closure and extension properties.

Definition 2.8.5. A winning strategy for the Duplicator in the (∃, k)-pebble
game (or, in the (∃, �=, k)-pebble game) on A and B is a nonempty family I
of partial homomorphisms (or, partial one-to-one homomorphisms) from A
to B with the following properties:

1. If f ∈ I, then |f − {(cA1 , cB1 ), . . . , (cAs , c
B
s )}| ≤ k.

2. I is closed under subfunctions:
If g ∈ I and f is a function such that {(cA1 , cB1 ), . . . , (cAs , c

B
s )} ⊆ f ⊆ g,

then f ∈ I.
3. I has the forth property up to k:

If f ∈ I and |f − {(cA1 , cB1 ), . . . , (cA1 , cBs )}| < k, then for every a ∈ A,
there is a g ∈ I such that f ⊆ g and a ∈ dom(g).

Spoiler plays on A : a1 a2 . . . ar
↓ ↓ · · · ↓

Duplicator plays on B : b1 b2 . . . br r ≤ k

Fig. 2.12. A typical run of the (∃, k)-pebble game on A and B
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It is clear that if the Duplicator wins the k-pebble game on A and B, then
the Duplicator also wins the (∃, k)-pebble game on A and B. The converse,
however, is not always true. Intuitively, it is easier for the Duplicator to
win the (∃, k)-pebble game than it is to win the k-pebble game, because
the Spoiler cannot switch between the two structures. Note also that, unlike
the k-pebble game, the (∃, k)-pebble game is asymmetric. For instance, the
Spoiler wins the (∃, k + 1)-pebble game on the cliques Kk+1 and Kk, but the
Duplicator wins the (∃, k + 1)-pebble game on the cliques Kk and Kk+1. A
similar state of affairs holds for the (∃, �=, k)-pebble game.

We now present the connection between existential pebble games and
definability in the finite-variable existential infinitary logics.

Definition 2.8.6. Let k be a positive integer, and let A and B be two
σ-structures.

• We write A  ∃,k
∞ω B to denote that every ∃Lk∞ω-sentence that is true on

A is also true on B.
• We write A  ∃,k

ωω B to denote that every first-order sentence of ∃Lk∞ω

that is true on A is also true on B.
• Let a1, . . . , ar be a sequence of elements from A and let b1, . . . , br be a

sequence of elements from B, for some r ≤ k. We write (A, a1, . . . , ar)
 ∃,k

∞ω (B, b1, . . . , br) to denote that for every ∃Lk∞ω-formula ϕ(v1, . . . , vr)
with free variables among v1, . . . , vr, we have that

A |= ϕ(v1/a1, . . . , vr/ar) =⇒ B |= ϕ(v1/b1, . . . , vr/br).

The relation  ∃, �=,k
∞ω is defined in a similar manner, with ∃Lk∞ω(�=) in place

of ∃Lk∞ω.

Theorem 2.8.7. [47] Let k be a positive integer, and let A and B be two
σ-structures. The following statements are then equivalent:

• A  ∃,k∞ω B.
• The Duplicator wins the (∃, k)-pebble game on A and B.

Moreover, if B is finite, then the above statements are also equivalent to

• A  ∃,k
ωω B.

A similar result holds for ∃Lk∞ω(�=) and the (∃, �=, k)-pebble game.

As a consequence of Theorem 2.8.7, we obtain a characterization of
∃Lω∞ω-definability on classes of finite structures.

Corollary 2.8.8. Let σ be a vocabulary, C a class of finite σ-structures, and
Q a Boolean query on C. The following statements are then equivalent:
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1. Q is ∃Lω∞ω-definable on C.
2. There is a positive integer k such that, for every structure A∈C and every

structure B ∈ C, if Q(A) = 1 and the Duplicator wins the (∃, k)-pebble
game on A and B, then Q(B) = 1.

Thus, we have a sound and complete method for studying ∃Lω∞ω-
definability on classes of finite structures.

Method 2.8.9 The Method of (∃, k)-Pebble Games for ∃Lω∞ω. Let σ
be a vocabulary, C a class of finite σ-structures, and Q a Boolean query on C.

Soundness. To show that Q is not ∃Lω∞ω-definable on C, it suffices to show
that, for every positive integer k, there are structures Ak and Bk in C
such that
• Q(Ak) = 1 and Q(Bk) = 0;
• the Duplicator wins the (∃, k)-pebble game on A and B.

Completeness. This method is also complete, that is, if Q is not ∃Lω∞ω-
definable on C, then, for every positive integer k, such structures Ak and
Bk exist.

A similar method can be used for studying ∃Lω∞ω(�=)-definability on
classes of finite structures using (∃, �=, k)-pebble games, k ≥ 1.

We now present some results concerning the descriptive and computa-
tional complexity of determining the winner in the (∃, k)-pebble game, k ≥ 1.
These results should be compared with the results in Propositions 2.7.18
and 2.7.20 and in Theorem 2.7.21 about the descriptive and computational
complexity of determining the winner in the k-pebble game, k ≥ 1.

Theorem 2.8.10. [50] Let σ be a vocabulary and let k be a positive integer.

1. The query “Given two σ-structures A and B, does the Spoiler win the
(∃, k)-pebble game on A and B?” is LFP-definable. As a result, there is
a polynomial-time algorithm such that, given two finite σ-structures A
and B, it determines whether the Spoiler wins the (∃, k)-pebble game on
A and B.

2. For every finite σ-structure B, there is a k-Datalog program ρB that
expresses the query “Given a σ-structure A, does the Spoiler win the
(∃, k)-pebble game on A and B?”

Proof. (Sketch) For notational simplicity, let us assume that the vocab-
ulary σ consists of relation symbols only. Let θ(x1, . . . , xk, y1, . . . , yk) be
a quantifier-free formula over the vocabulary σ1 + σ2 asserting that the
correspondence xi �→ yi, 1 ≤ i ≤ k, is not a mapping or that it is a
mapping that is not a homomorphism from the substructure generated by
x1, . . . , xk over the vocabulary σ1 to the substructure induced by y1, . . . , yk
over the vocabulary σ2. In particular, θ is the disjunction of the following
formulas:
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• xi = xj ∧ yi �= yj , for every i, j ≤ k such that i �= j.
• R1(xi1 , . . . , xim) ∧ ¬R2(yi1 , . . . , yim), for every m-ary relation symbol R

in σ and every m-tuple (i1, . . . , im) of indices from the set {1, . . . , k}.

Let T be a 2k-ary relation symbol not in the vocabulary σ1 + σ2 and let
ϕ(x1, . . . , xk, y1, . . . , yk, T ) be the following positive first-order formula over
the vocabulary σ1 + σ2 ∪ {T }:

θ(x1, . . . , xk, y1, . . . , yk) ∨
k∨

j=1

(∃xj ∈ D1)(∀yj ∈ D2)T (x1, . . . , xk, y1, . . . , yk).

It is easy to verify that if A and B are σ-structures, and (a1, . . . , ak) and
(b1, . . . , bk) are k-tuples of elements from A and B respectively, then the
following statements are equivalent:

1. A + B |= ϕ∞(a1, . . . , ak, b1, . . . , bk).
2. The Spoiler wins the (∃, k)-pebble game on (A, a1, . . . , ak) and

(B, b1, . . . , bk).

Let ψ be the sentence (∃x1) · · · (∃xk)(∀y1) · · · (∀yk)ϕ∞(x1, . . . , xk, y1, . . . , yk)
of least fixed point logic LFP. Consequently, for every σ-structure A and
every σ-structure B, the following statements are equivalent:

1. A + B |= ψ.
2. The Spoiler wins the (∃, k)-pebble game on A and B.

Note that the positive first-order formula ϕ above involves existential quan-
tifiers that are interpreted over the elements of A, and universal quantifiers
that are interpreted over the elements of B. Consequently, if B is a fixed finite
σ-structure, then the universal quantifiers can be replaced by finitary conjunc-
tions over the elements of the universe B of B, and thus ϕ can be transformed
to a k-Datalog program ρB that expresses the query “Given a finite σ-structure
A, does the Spoiler win the existential k-pebble game on A and B?” In what
follows, we describe this k-Datalog program in some detail. The goal of ρB is a
0-ary predicate S. Let b = (b1, . . . , bk) be a k-tuple of elements of B. For each
such k-tuple, we introduce a k-ary relation symbol Tb and the following rules:

• For every i and j such that bi �= bj , we have a rule

Tb(x′
1, . . . , x

′
k) : − ,

with an empty body, where x′
i = x′

j = xi and x′
s = xs, for s �= i, j.

Intuitively, these rules say that the correspondence xi �→ bi, 1 ≤ i ≤ k, is
not a mapping.

• For every m-ary relation symbol R of σ and every m-ary tuple (i1, . . . , im)
such that

B, bi1 , . . . , bim |= ¬R(xi1 , . . . , xim),
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we have a rule
Tb(x1, . . . , xk) : − R(xi1 , . . . , xim).

Intuitively, these rules say that the correspondence xi �→ bi, 1 ≤ i ≤ k, is
not a partial homomorphism.

• For every j such that 1 ≤ j ≤ k, we have a rule

T (x1, . . . , xk) : −
∧

c∈B
Tb[j/c](x1, . . . , xj−1, y, xj+1, . . . , xk),

where b[j/c] = (b1, . . . , bj−1, c, bj+1, . . . , bk) and y is a new variable (note,
however, that the body of the rule has k variables).

• For the goal predicate S, we have the rule

S : −
∧

b∈Bk
Tb(x1, . . . , xk). �

As stated in Theorem 2.7.19, Grohe [34] showed that if σ is a vocabulary
containing at least one binary relation symbol, then for every k ≥ 2, the
following query is P-complete: “given two finite σ-structures A and B, does
the Duplicator win the k-pebble game on A and B?” In this query, both
structures A and B are part of the input. Recall, however, that the complexity
drops if the structure B is kept fixed. Indeed, as shown in Theorem 2.7.21,
for each fixed positive integer k and for each fixed finite σ-structure B, the
following query is FOk-definable (and, hence, solvable in logarithmic space):
“given a finite σ-structure A, does the Duplicator win the k-pebble game
on A and B?” In contrast, we now show that determining the winner in the
(∃, k)-pebble game can be P-complete, even for a fixed k and a fixed B.

Proposition 2.8.11. There are a vocabulary σ consisting of relation symbols
of arity at most 3 and a finite σ-structure B such that the following query
is P-complete: “given a finite σ-structure A, does the Duplicator win the
(∃, 3)-pebble game on A and B?”

Proof. We shall describe a logarithmic-space reduction from the satisfiability
problem Horn 3-Sat for Horn formulas with at most three literals per
clause, which is a well-known P-complete problem (see [32])

Let σ be a vocabulary consisting of two unary relation symbols N1 and
P1, two binary relation symbols N2 and P2, and two ternary relation symbols
N3 and P3. intuition These relation symbols will represent the various types
of clauses that may occur in a Horn formula with at most three literals per
clause. Specifically, N1 and P1 will represent the unit clauses ¬x and x, N2

and P2 will represent the binary Horn clauses ¬x∨¬y and ¬x∨y, and N3 and
P3 will represent the ternary Horn clauses ¬x∨¬y ∨¬z and ¬x∨¬y ∨ z. Let
B be the Boolean σ-structure whose relations are the sets of satisfying truth
assignments of Horn clauses with at most three literals per clause. More pre-
cisely, the universe of B is the set {0, 1} and the relations of B are as follows:
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• NB
1 = {0} and PB

1 = {1};
• NB

2 = {0, 1}2 − {(1, 1)} and PB
2 = {0, 1}2 − {(1, 0)};

• NB
3 = {0, 1}3 − {(1, 1, 1)} and NB

3 = {0, 1}3 − {(1, 1, 0)}.
If ϕ is a Horn formula with at most three literals per clause, then ϕ can be
encoded by a finite σ-structure Aϕ such that the universe A of A is the set
of all variables occurring in ϕ and the relations on A represent the clauses of
ϕ. For instance, NA

2 consists of all pairs (x, y) of variables such that ¬x∨ ¬y
is a clause of ϕ, and PA

3 consists of all triples (x, y, z) of variables such that
¬x ∨ ¬y ∨ z is a clause of ϕ. Clearly, Aϕ can be constructed in logarithmic
space from ϕ.

We now claim that ϕ is satisfiable if and only if the Duplicator wins
the (∃, 3)-pebble game on Aϕ and B. If ϕ is satisfiable, then a satisfying
truth assignment is a homomorphism from Aϕ to B. Hence, the Duplicator
can win the (∃, 3)-pebble game on Aϕ and B by using the values of this
homomorphism to respond to the moves of the Spoiler. In fact, in this case the
Duplicator can win the (∃, k)-pebble game on Aϕ and B for every k ≥ 1. The
other direction requires more work. We start with the observation that the
well-known polynomial-time marking algorithm for Horn satisfiability is read-
ily expressible in 3-Datalog. More precisely, consider the following 3-Datalog
program π with T and P as its IDB predicates and P as its goal predicate:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

T (z) : − P1(z)
T (z) : − P2(x, z), T (x)
T (z) : − P3(x, y, z), T (x), T (y)
P : − N1(x), T (x)
P : − N2(x, y), T (x), T (y)
P : − N3(x, y, z), T (x), T (y), T (z)

It is easy to verify that B does not satisfy the goal predicate P . Moreover, a
Horn formula ϕ with at most three literals per clause is unsatisfiable if and
only if the structure Aϕ satisfies the goal predicate P . This holds because the
first three rules of π mimic the marking algorithm for Horn satisfiability by
putting into the predicate T all variables of ϕ that must take the value “true”
in every satisfying truth assignment; the last three rules capture the possible
ways in which a Horn formula may be found to be unsatisfiable by this
algorithm because all variables occurring in some negative clause are forced to
take the value “true”. Assume now that the Duplicator wins the (∃, 3)-pebble
game on Aϕ and B. We claim that ϕ is satisfiable. If this is not the case,
then Aϕ satisfies the goal predicate P of the above 3-Datalog program π.
Since the Duplicator wins the (∃, 3)-pebble game on Aϕ and B, Theorem
2.8.8 implies that B satisfies the goal predicate P of π, which is not true. �

Obviously, Proposition 2.8.11 implies that, when both structures A and
B are part of the input, then determining the winner in the (∃, 3)-pebble
game is a P-complete problem. In fact, it is known that this holds for every
fixed k ≥ 2 and for vocabularies consisting of a binary relation symbol
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and a fixed number of unary relation symbols [48]. As stated earlier, it has
been conjectured, but remains to be proved, that determining the winner
in the k-pebble game when k is part of the input is an EXPTIME-complete
problem. In contrast, determining the winner in the (∃, k)-pebble game when
k is part of the input has been shown to be EXPTIME-complete.

Theorem 2.8.12. [48] The following problem is EXPTIME-complete: given
a positive integer k, a vocabulary σ consisting of one binary relation symbol
and a number of unary relation symbols, and two finite σ-structures A and
B, does the Duplicator win the (∃, k)-pebble game on A and B?

We note that some of the results about Datalog and (∃, k)-pebble games
that we have presented here have found numerous applications to the study of
constraint satisfaction problems, which is the topic of Chap. 6 of this volume.

2.8.3 Descriptive Complexity of Fixed Subgraph Homeomorphism
Queries

The original motivation behind the introduction of (∃, k)-pebble games and
(∃, �=, k)-pebble games in [47] was to develop tools for analyzing the expressive
power of Datalog and Datalog(�=). We now close this chapter by presenting a
case study of the expressibility of certain important graph-theoretic problems
in Datalog(�=) using (∃, �=, k)-pebble games.

Definition 2.8.13. Let H and G be two directed graphs.
A homeomorphism h : H � G from H to G is a one-to-one mapping

from the nodes of H to the nodes of G such that h maps the edges of H to
pairwise node-disjoint simple paths of G.

The concept of a homeomorphism gives rise to a family of decision
problems on directed graphs, one for each fixed finite directed graph H.

Definition 2.8.14. Let H be a fixed finite directed graph. The Fixed Sub-

graph Homeomorphism Query with Pattern H, denoted by FiSH(H),
asks: given a directed graph G and a one-to-one mapping from the nodes of
H to the nodes of G, is there a homeomorphism h : H � G extending this
mapping?

The following examples illustrate some typical members of this family of
queries.

Example 2.8.15. Let H be a directed graph consisting of two parallel directed
edges, that is, H has four nodes s1, s2, t1, t2 and two edges (s1, t1), (s2, t2),
as depicted in the upper part of Fig. 2.13.

FiSH(H) is then the 2-Disjoint Paths query: given a directed graph G
and four nodes s′1, s

′
2, t

′
1, t

′
2, does G contain two node-disjoint simple paths

from s′1 to t′1 and from s′2 to t′2? This is depicted in the lower part of Fig. 2.13.
If H is taken to be a graph consisting of m parallel directed edges, this

example generalizes to the m-Disjoint Paths query, m ≥ 2.
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Fig. 2.13. The 2-Disjoint Paths query

Example 2.8.16. If C3 is a directed cycle with three nodes, then FiSH(C3)

is the following query: given a directed graph G and three nodes a1, a2, a3,
is there a simple cycle in G containing these nodes?

If H is taken to be a directed cycle Cm with m nodes, m ≥ 3, this
example generalizes to the following query: given a directed graph G and m
nodes a1, . . . , am, is there a simple cycle in G containing these m nodes?

Fortune, Hopcroft, and Wyllie [26] obtained a complete classification of
the computational complexity of all FiSH(H) queries as H ranges over all
finite directed graphs. Before stating this classification result, we need one
more concept.

Definition 2.8.17. A star graph is a directed graph that consists either of a
single source node and edges emanating from this node or of a single sink node
and edges terminating on this node. Star graphs are depicted in Fig. 2.14.

Theorem 2.8.18. [26] The following dichotomy holds for the computational
complexity of the Fixed Subgraph Homeomorphism Query with

Pattern H, where H ranges over all finite directed graphs:

�
�

�
�

�
�

�

��
�	 ���

Fig. 2.14. Star graphs
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• If H is a star graph, then FiSH(H) is in P.
• If H is not a star graph, then FiSH(H) is NP-complete.

Let us digress for a moment and explain why the preceding result is a
dichotomy theorem. Ladner [51] showed that if P �= NP, then there is a
decision problem Q such that

• Q ∈ NP− P;
• Q is not NP-complete.

Thus, if P �= NP, then NP contains problems of intermediate complexity
between polynomial-time solvability and NP-completeness. Theorem 2.8.18,
however, asserts that no FiSH(H) query is a problem of such intermediate
complexity; this dichotomy is illustrated in Fig. 2.15.

Note that the dichotomy in the computational complexity of FiSH(H)

queries is proper only if P �= NP. We now present a dichotomy in the
descriptive complexity of FiSH(H) queries that does not depend on any
complexity-theoretic assumptions.

Theorem 2.8.19. [47] The following dichotomy holds for the descriptive
complexity of the Fixed Subgraph Homeomorphism Query with

Pattern H, where H ranges over all finite directed graphs:

• If H is a star graph, then FiSH(H) is ∃Lω∞ω(�=)-definable; in fact, it is
definable in Datalog( �=).

• If H is not a star graph, then FiSH(H) is not ∃Lω∞ω(�=)-definable.

Proof. (Hint) If H is a star graph, then the FiSH(H) query is solvable in
polynomial time using a max flow algorithm, which can be expressed by a
Datalog(�=) program.

The 2-Disjoint Paths query is the key case of the results concerning
the inexpressibility of FiSH(H) in Datalog(�=) when H is not a star graph.
To this effect, one can show that, for every k ≥ 1, there are directed graphs
Ak and Bk such that the following hold:

↗ NP-complete

FiSH(H) NP − P

↘ P

Fig. 2.15. The dichotomy in the computational complexity of FiSH(H) queries
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• Ak satisfies the 2-Disjoint Paths query, but Bk does not;
• the Duplicator wins the (∃, �=, k)-pebble game on Ak, Bk.

The graph Ak consists of two disjoint sufficiently long paths. The graph
Bk, however, is much more complicated and so is the description of the
Duplicator’s winning strategy in the (∃, �=, k)-pebble game on Ak and Bk.
This graph is extracted from the reduction of 3-Sat to 2-Disjoint Paths

used by Fortune, Hopcroft, and Wyllie [26] to establish that the 2-Disjoint

Paths query is NP-hard. �

Several remarks are in order now. The first is that the proof of Theorem
2.8.19 reveals that certain constructions used to prove NP-hardness can
also be used to obtain interesting structures on which to play combinatorial
games and establish lower bounds for definability. Note that the dichotomy
in the descriptive complexity of FiSH(H) queries cannot be proved using
preservation properties of Datalog(�=), because these queries are preserved
under one-to-one homomorphisms.

It is an open problem to significantly strengthen the lower bound in
Theorem 2.8.19 by establishing that if H is not a star graph, then the
FiSH(H) query is not Lω∞ω-definable. The critical step would be to show
that the 2-Disjoint Paths query is not Lω∞ω-definable.

As a by-product of their celebrated work on the graph minor problem,
Robertson and Seymour [57, 58] showed that every FiSH(H) query is
solvable in polynomial time when restricted to undirected graphs. It would
be interesting to carry out a detailed study of the descriptive complexity
of FiSH(H) queries on undirected graphs. A preliminary investigation by
Barland [7] showed that the FiSH(C3) query is LFP-definable on the class
G of all finite undirected graphs. This suggests that if there is a dichotomy
in the descriptive complexity of FiSH(H) queries on undirected graphs, then
the boundary of that dichotomy is going to be different from the boundary
of the dichotomy in Theorem 2.8.19.
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3

Finite Model Theory and Descriptive
Complexity

Erich Grädel

This chapter deals with the relationship between logical definability and
computational complexity on finite structures. Particular emphasis is given
to game-based evaluation algorithms for various logical formalisms and to
logics capturing complexity classes.

In addition to the most common logical systems such as first-order and
second-order logic (and their fragments), this survey focuses on algorithmic
questions and complexity results related to fixed-point logics (including
fixed-point extensions of first-order logic, the modal μ-calculus, the database
query language Datalog, and fixed-point logics with counting).

Finally, it is discussed how the general approach and the methodology of
finite model theory can be extended to suitable domains of infinite structures.
As an example, some results relating metafinite model theory to complexity
theory are presented.

3.1 Definability and Complexity

One of the central issues in finite model theory is the relationship between
logical definability and computational complexity. We want to understand
how the expressive power of a logical system – such as first-order or second-
order logic, least fixed-point logic, or a logic-based database query language
such as Datalog – is related to its algorithmic properties. Conversely, we want
to relate natural levels of computational complexity to the defining power of
logical languages, i.e., we want logics that capture complexity classes.1

The aspects of finite model theory that are related to computational
complexity are also referred to as descriptive complexity theory. While
computational complexity theory is concerned with the computational
resources such as time, space, or the amount of hardware that are necessary
to decide a property, descriptive complexity theory asks for the logical

1 For a potential application of such results, see Exercise 3.5.32.
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resources that are necessary to define it. In this chapter we shall give a
survey of descriptive complexity theory. We shall assume that the reader is
familiar with fundamental notions of logic and complexity theory. Specifically
we assume familiarity with first-order logic and with deterministic and
non-deterministic complexity classes. See the appendix to this chapter for a
brief survey on alternating complexity classes.

In Sect. 3.1, we discuss some basic issues concerning the relationship
between logic and complexity, we introduce model-checking games, and we
determine in a detailed way the complexity of first-order model checking.

In Sect. 3.2, we make precise the notion of a logic capturing a complexity
class. As our first capturing result, we prove Fagin’s Theorem, which says
that existential second-order logic captures NP. In a limited scenario, namely
for the domain of ordered structures, we then derive capturing results for a
number of other complexity classes, including PTIME and LOGSPACE, by
use of fragments of second-order logic (such as second-order Horn logic) and
by extensions of first-order logic (such as transitive closure logics).

Section 3.3 is devoted to fixed-point logics. These are probably the most
important logics for finite model theory and also play an important role in
many other fields of logic in computer science. We shall discuss many variants
of fixed point logics, including least, inflationary and partial fixed point logic,
the modal μ-calculus, and the database query language Datalog. We shall
explain model checking issues, capturing results for PTIME and PSPACE,
and also discuss structural issues for these logics.

In Sect. 3.4 we introduce logics with counting. One of the limitations of
common logics on finite structures is an inability to count. By adding to first-
order logic and, in particular, to fixed-point logic an explicit counting mecha-
nism, one obtains powerful logics that come quite close to capturing PTIME.

Section 3.5 is devoted to capturing results on certain specific domains
of unordered structures, via a technique called canonization. While the
general problem of whether there exists a logic capturing PTIME on all
finite structures is still open (and it is widely conjectured that no such logic
exists), canonization permits us to find interesting domains of structures
where fixed-point logic or fixed-point logic with counting can express all
of PTIME.

Finally, in Sect. 3.6 we discuss the extension of the general approach and
methods of finite model theory to suitable domains of infinite structures, i.e.,
the generalization of finite model theory to an algorithmic model theory. We
discuss several domains of infinite structures for which this approach makes
sense, and then treat, as an example, the domain of metafinite structures, for
which capturing results have been studied in some detail.

3.1.1 Complexity Issues in Logic

One of the central issues in the relationship between complexity theory
and logic is the algorithmic complexity of the common reasoning tasks for
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a logic. There are numerous such tasks, but most of them can be easily
reduced to two (at least for logics with reasonable closure properties), namely
satisfiability testing and model checking. The satisfiability problem for a
logic L on a domain D of structures takes formulae ψ ∈ L as inputs, and the
question to be answered is whether there exists in D a model for ψ. Although
satisfiability problems are of fundamental importance in many areas of logic
and its applications, they do not really play a crucial role in finite model
theory. Nevertheless, they are considered occasionally and, moreover, some
of the central results of finite model theory have interesting connections with
satisfiability problems. We shall point out some such relations later.

On the other hand, model-checking problems occupy a central place in
finite model theory. For a logic L and a domain D of (finite) structures, the
model-checking problem asks, given a structure A ∈ D and a formula
ψ ∈ L, whether it is the case that A |= ψ. A closely related problem is
formula evaluation (or query evaluation): given a structure A and a
formula ψ(x) (with free variables x), the problem is to compute the relation
defined by ψ on A, i.e. the set ψA := {a : A |= ψ(a)}. Obviously, the
evaluation problem for a formula with k free variables on a structure with n
elements reduces to nk model-checking problems.

Note that a model-checking problem has two inputs: a structure and
a formula. We can measure the complexity in terms of both inputs, and
this is what is commonly refered to as the combined complexity of the
model-checking problem (for L and D). However, in many cases, one of the
two inputs is fixed, and we measure the complexity only in terms of the other.
If we fix the structure A, then the model-checking problem for L on this
structure amounts to deciding ThL(A) := {ψ ∈ L : A |= ψ}, the L-theory
of A. The complexity of this problem is called the expression complexity
of the model-checking problem (for L on A). For first-order logic (FO) and
for monadic second-order logic (MSO) in particular, such problems have a
long tradition in logic and numerous applications in many fields. Of even
greater importance for finite model theory are model-checking problems for a
fixed formula ψ, which amounts to deciding the model class of ψ inside D,
ModD(ψ) := {A ∈ D : A |= ψ}. Its complexity is the structure complexity
or data complexity of the model-checking problem (for ψ on D).

Besides the algorithmic analysis of logic problems, there is another aspect
of logic and complexity that has become even more important for finite model
theory, and which is really the central programme of descriptive complexity
theory. The goal here is to characterize complexity from the point of view
of logic (or, more precisely, model theory)2 by providing, for each important
complexity level, logical systems whose expressive power (on finite structures,
or on a particular domain of finite structures) coincides precisely with that

2 There also exist other logical approaches to complexity, based for instance on
proof theory. Connections to the finite model theory approach exist, but the
flavour is quite different.
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complexity level. For a detailed definition, see Sect. 3.2. We shall see that
there have been important successes in this programme, but that there also
remain difficult problems that are still open.

3.1.2 Model Checking for First-Order Logic

We shall now discuss the problem of evaluating first-order formulae on finite
structures using a game-based approach. Model-checking problems, for almost
any logic, can be cast as strategy problems for appropriate model-checking
games (also called Hintikka games).3 With any formula ψ(x), any structure A
(of the same vocabulary as ψ), and any tuple a of elements of A, we associate
a model-checking game G(A, ψ(a)). It is played by two players, Verifier
and Falsifier. Verifier (sometimes also called Player 0, or ∃, or Eloise) tries
to prove that A |= ψ(a), whereas Falsifier (also called Player 1, or ∀, or
Abelard) tries to establish that the formula is false. For first-order logic, the
evaluation games are very simple, in the sense that winning conditions are
positional, and that the games are well-founded, i.e. all possible plays are
finite (regardless of whether the input structure is finite or infinite). For more
powerful logics, notably fixed-point logics, model checking-games may have
infinite plays and more complicated winning conditions (see Sect. 3.3.4).

The Game G(A, ψ(a))

Let A be a finite structure and let ψ(x) be a relational first-order formula,
which we assume to be in negation normal form, i.e. built up from atoms
and negated atoms by means of the propositional connectives ∧,∨ and the
quantifiers ∃, ∀. Obviously, any first-order formula can be converted in linear
time into an equivalent one in negation normal form. The model-checking
game G(A, ψ(a)) has positions (ϕ, ρ) such that ϕ is a subformula of ψ, and
ρ : free(ϕ) → A is an assignment from the free variables of ϕ to elements of
A. To simplify the notation we usually write ϕ(b) for a position (ϕ, ρ) where
ρ assigns the tuple b to the free variables of ϕ. The initial position of the
game is the formula ψ(a).

Verifier (Player 0) moves from positions associated with disjunctions and
with formulae starting with an existential quantifier. From a position ϕ ∨ ϑ,
she moves to either ϕ or ϑ. From a position ∃yϕ(b, y), Verifier can move to any
position ϕ(b, c), where c ∈ A. Dually, Falsifier (Player 1) makes corresponding
moves from conjunctions and universal quantifications. At atoms or negated
atoms, i.e. positions ϕ(b) of the form b = b′, b �= b′, Rb, or ¬Rb, the game is
over. Verifier has won the play if A |= ϕ(b); otherwise, Falsifier has won.

Model-checking games are a way of defining the semantics of a logic. The
equivalence to the standard definition can be proved by a simple induction.
3 These games should not be confounded with the games used for model comparison

(Ehrenfeucht–Fräıssé games) that describe the power of a logic for distinguishing
between two structures.
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Proposition 3.1.1. Verifier has a winning strategy for the game G(A, ψ(a))
if, and only if, A |= ψ(a).

This suggests a game-based approach to model checking: given A and
ψ, construct the game G(A, ψ) and decide whether Verifier has a winning
strategy from the initial position. Let us therefore look a little closer at
strategy problems for games.

3.1.3 The Strategy Problem for Finite Games

Abstractly, we can describe a two-player game with positional winning
conditions by a directed game graph G = (V, V0, V1, E), with a partioning
V = V0 ∪ V1 of the nodes into positions where Player 0 moves and positions
where Player 1 moves. The possible moves are described by the edge relation
E ⊆ V × V . We call w a successor of v if (v, w) ∈ E, and we denote the set
of all successors of v by vE. To decribe the winning conditions, we adopt
the convention that Player σ loses at positions v ∈ Vσ where no moves are
possible. (Alternatively, one could explicitly include in the game description
the sets S0, S1 of winning terminal positions for each player.)

A play of G is a path v0, v1, . . . formed by the two players starting from a
given position v0. Whenever the current position vn belongs to Vσ, Player σ
chooses a move to a successor vn+1 ∈ vnE; if no move is available, then
Player σ has lost the play. If this never occurs, the play goes on infinitely and
the winner has to be established by a winning condition on infinite plays. For
the moment, let us say that infinite plays are won by neither of the players.4

A strategy for a player is a function defining a move for each situation in
a play where she has to move. Of particular interest are positional strategies,
which do not depend on the history of the play, but only on the current
position. Hence, a positional strategy for Player σ in G is a (partial)
function f : Vσ → V which indicates a choice (v, f(v)) ∈ E for positions
v ∈ Vσ. A play v0, v1, . . . is consistent with a positional strategy f for
Player σ if vn+1 = f(vn) for all vn ∈ Vσ. A strategy for a player is winning
from position v0 if she wins every play starting from v0 that is consistent
with that strategy. We say that a strategy is winning on a set W if it is
winning from each position in W . The winning region Wσ for Player σ is
the set of positions from which she has a winning strategy.

A game is well-founded if all its plays are finite. Note that a model-
checking game G(A, ψ(a)) for a first-order formula ψ has a finite game graph
if, and only if, A is finite, but it is well-founded in all cases. In general,
however, games with finite game graphs need not be well-founded.

A game is determined if, from each position, one of the players has
a winning strategy, i.e. if W0 ∪ W1 = V . Well-founded games are always

4 We shall later introduce games with more interesting winning conditions for infi-
nite plays.
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determined, and so are large classes of more general games (such as games in
the Borel hierarchy; see [82, 96]).

We denote by Game the strategy problem for games with finite game
graphs and positional winning conditions, i.e.

Game = {(G, v) : Player 0 has a winning strategy in G from position v}.

It is obvious that the Game problem can be solved in polynomial time.
Denote by Wn

σ the set of positions from which Player σ has a strategy to win
the game in at most n moves. Then W 0

σ = {v ∈ V1−σ : vE = ∅} is the set
of winning terminal positions for Player σ, and we can compute the sets Wn

σ

inductively by using

Wn+1
σ := {v ∈ V0 : vE ∩Wn

σ �= ∅} ∪ {v ∈ V1 : vE ⊆Wn
σ }

until Wn+1
σ = Wn

σ .

To see that Game can actually be solved in linear time, a little more
work is necessary. The following algorithm is a variant of depth-first search,
and computes the entire winning sets for both players in time O(|V |+ |E|).

Theorem 3.1.2. Winning regions of finite games can be computed in linear
time.

Proof. We present an algorithm that computes, for each position, which
player, if any, has a winning strategy for the game starting at that position.
During the computation three arrays are used:

• win[v] contains either 0 or 1, indicating which player wins, or ⊥ if we do
not know yet, or if none of the players has a winning strategy from v;

• P [v] contains the predecessors of v; and
• n[v] is the number of those successors for which win[v] = ⊥.

A linear-time algorithm for the Game problem

Input: A game G = (V, V0, V1, E)

forall v ∈ V do (∗ 1: initialization ∗)
win[v] := ⊥
P [v] := ∅
n[v] := 0

enddo

forall (u, v) ∈ E do (∗ 2: calculate P and n ∗)
P [v] := P [v] ∪ {u}
n[u] := n[u] + 1

enddo
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forall v ∈ V0 (∗ 3: calculate win ∗)
if n[v] = 0 then Propagate(v, 1)

forall v ∈ V1

if n[v] = 0 then Propagate(v, 0)
return win end

procedure Propagate(v, σ)
if win[v] �= ⊥ then return
win[v] := σ (∗ 4: mark v as winning for Player σ ∗)
forall u ∈ P [v] do (∗ 5: propagate change to predecessors ∗)

n[u] := n[u]− 1
if u ∈ Vσ or n[u] = 0 then Propagate(u, σ)

enddo
end

The heart of this algorithm is the procedure Propagate(v, σ) which is
called any time we have found that Player σ has a winning strategy from
position v. Propagate(v, σ) records this fact and investigates whether we are
now able to determine the winning player for any of the predecessors of v.
This is done by applying the following rules:

• If the predecessor u belongs to Player σ, then this player has a winning
strategy from u by moving to position v.

• If the predecessor u belongs to the opponent of Player σ, if win[u] is
undefined, and if the winning player has already been determined for all
successors w of u, then win[w] = σ for all of those successors, and hence
Player σ wins from u regardless of the choice of her opponent.

Since parts 4 and 5 of the algorithm are reached only once for each posi-
tion v, the inner part of the loop in part 5 is executed at most

∑
v |P [v]| = |E|

times. Therefore the running time of the algorithm is O(|V |+ |E|).
The correctness of the value assigned to win[v] is proved by a straightfor-

ward induction on the number of moves in which the corresponding player can
ensure that she wins. Note that the positions satisfying n[v] = 0 in part 3 are
exactly those without outgoing edges even if n[v] is modified by Propagate. �

Game is known to be a PTIME-complete problem (see [57]). This remains
the case for strictly alternating games, where E ⊆ V0 × V1 ∪ V1 × V0.
Indeed, any game can be transformed into an equivalent strictly alternating
one by introducing for each move (u, v) ∈ Vσ × Vσ a new node e ∈ V1−σ and
by replacing the move (u, v) by two moves (u, e) and (e, u).

The Game problem (sometimes also called the problem of alternating
reachability) is a general combinatorial problem that reappears in different
guises in many areas. To illustrate this by an example, we shall now show
that the satisfiability problem for propositional Horn formulae is essentially
the same problem as Game.
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Satisfiability for Horn Formulae

It is well known that Sat-Horn, the satisfiability problem for propositional
Horn formulae, is

• PTIME-complete [57], and
• solvable in linear time [36, 68].

Using the Game problem, we can obtain very simple proofs for both
results. Indeed, Game and Sat-Horn are equivalent under log–lin reductions,
i.e. reductions that are computable in linear time and logarithmic space. The
reductions are so simple that we can say that Game and Sat-Horn are
really the same problem.

Theorem 3.1.3. Sat-Horn is log–lin equivalent to Game.

Proof. Game ≤log−lin Sat-Horn. Given a finite game graph
G = (V, V0, V1, E), we can construct in time O(|V | + |E|) a proposi-
tional Horn formula ψG consisting of the clauses u ← v for all edges
(u, v) ∈ E with u ∈ V0, and the clauses u← v1∧· · · ∧vm for all nodes u ∈ V1,
where uE = {v1, . . . , vm}. The minimal model of ψG is precisely the winning
set W0 for Player 0. Hence v ∈ W0 if the Horn formula ψG ∧ (0 ← v) is
unsatisfiable.

Sat-Horn ≤log−lin Game: Given a Horn formula ψ(X1, . . . , Xn) =∧
i∈I Ci with propositional variables X1, . . . , Xn and Horn clauses Ci of the

form Hi ← Xi1 ∧ · · ·Xim (where the head of the clause, Hi, is either a
propositional variable or the constant 0), we define a game Gψ as follows. The
positions of Player 0 are the initial position 0 and the propositional variables
X1, . . . , Xn, and the positions of Player 1 are the clauses of ψ. Player 0 can
move from a position X to any clause Ci with head X , and Player 1 can
move from a clause Ci to any variable occurring in the body of Ci. Formally,
Gψ = (V,E), V = V0 ∪ V1 with V0 = {0} ∪ {X1, . . . , Xn}, V1 = {Ci : i ∈ I},
and

E = {(X,C) ∈ V0 × V1 : X = head(C)} ∪ {(C,X) ∈ V1 × V0 : X ∈ body(C)}.

Player 0 has a winning strategy for Gψ from position X if, and only if, ψ |= X .
In particular, ψ is unsatisfiable if, and only if, Player 0 wins from position 0. �

3.1.4 Complexity of First-Order Model Checking

Roughly, the size of the model-checking game G(A, ψ) is the number of
different instantiations of the subformulae of ψ with elements from A. It is in
many cases not efficient to construct the full model-checking game explicitly
and then solve the strategy problem, since many positions of the game will
not really be needed.
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To measure the size of games, and the resulting time and space bounds
for the complexity of model checking as precisely as possible, we use, besides
the formula length |ψ|, the following parameters. The closure cl(ψ) is the
set of all subformulae of ψ. Obviously, |cl(ψ)| ≤ |ψ|, and in some cases |cl(ψ)|
can be much smaller than |ψ|. The quantifier rank qr(ψ) is the maximal
nesting depth of quantifiers in ψ, and the width of ψ is the maximal number
of free variables in subformulae, i.e.

width(ψ) = max{|free(ϕ)| : ϕ ∈ cl(ψ)}.

Instead of considering the width, one can also rewrite formulae with as
few variables as possible.

Lemma 3.1.4. A first-order formula ψ has width k if, and only if, it is
equivalent, via a renaming of bound variables, to a first-order formula with
at most k distinct variable symbols.

Bounded-variable fragments of logics have received a lot of attention in
finite model theory. However, here we state the results in terms of formula
width rather than number of variables to avoid the necessity to economize
on the number of variables. Given the close connection between games
and alternating algorithms, it is not surprising that the good estimates for
the complexity of model-checking games are often in terms of alternating
complexity classes. We now describe an alternating model-checking algorithm
for first-order logic that can be viewed as an on-the-fly construction of the
model-checking game while playing it.

Theorem 3.1.5. There is an alternating model-checking algorithm that,
given a finite structure A and a first-order sentence ψ, decides whether
A |= ψ in time O(|ψ| + qr(ψ) log |A|) and space O(log |ψ| + width(ψ) log |A|)
(assuming that atomic statements are evaluated in constant time).

Proof. We present a recursive alternating procedure ModelCheck(A, ρ, ψ)
that, given a finite structure A, a first-order formula ψ that may contain free
variables, and an assignment ρ : free(ψ) → A, decides whether A |= ψ[ρ].

ModelCheck(A, ρ, ψ)

Input: a first-order formula ψ in negation normal form
a finite structure A (with universe A),
an assignment ρ : free(ψ) → A

if ψ is an atom or negated atom then
if A |= ψ[ρ] accept else reject

if ψ = η ∨ ϑ then do
guess ϕ ∈ {η, ϑ}, and let ρ′ := ρ |free(ϕ)

ModelCheck(A, ρ′, ϕ)
if ψ = η ∧ ϑ then do
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universally choose ϕ ∈ {η, ϑ}, and let ρ′ := ρ |free(ϕ)

ModelCheck(A, ρ′, ϕ)
if ψ = ∃xϕ then do

guess an element a of A
ModelCheck(A, ρ[x �→ a], ϕ)

if ψ = ∀xϕ then do
universally choose an element a of A
ModelCheck(A, ρ[x �→ a], ϕ)

A straightforward induction shows that the procedure is correct. The
time needed by the procedure is the depth of the syntax tree of ψ plus the
time needed to produce the variable assignments. On each computation path,
at most qr(ψ) elements of A have to be chosen, and each element needs
log |A| bits. Hence the time complexity is O(|ψ| + qr(ψ) log |A|). During the
evaluation, the algorithm needs to maintain a pointer to the current position
in ψ and to store the current assignment, which needs free(ϕ) log |A| bits
for the current subformula ϕ. Hence the space needed by the algorithm is
O(log |ψ|+ width(ψ) log |A|). �

Theorem 3.1.6. The model-checking problem for first-order logic is
PSPACE-complete. For any fixed k≥ 2, the model-checking problem for
first-order formulae of width at most k is PTIME-complete.

Proof. Membership of these complexity classes follows immediately from
Theorem 3.1.5 via the facts that alternating polynomial time coincides
with polynomial space and alternating logarithmic space coincides with
polynomial time.

Completeness follows by straightforward reductions from known complete
problems. QBF, the evaluation problem for quantified Boolean formulae, is
PSPACE-complete. It reduces to first-order model checking on the fixed struc-
ture (A,P ) with A = {0, 1} and P = {1}. Given a quantified Boolean formula
ψ without free propositional variables,we can translate it into a first-order
sentence ψ as follows: replace every quantification ∃Xi or ∀Xi over a proposi-
tional variable Xi by a corresponding first-order quantification ∃xi or ∀xi and
replace atomic propositions Xi by atoms Pxi. Obviously, ψ evaluates to true
if, and only if, (A,P ) |= ϕ′. This proves that the expression complexity and
the combined complexity of first-order model checking is PSPACE-complete.

To see that the model-checking problem for first-order formulae of width
2 is PTIME-complete, we reduce to it the Game problem for strictly alter-
nating games, with Player 0 moving first. Given a strictly alternating game
graph G = (V, V0, V1, E), we construct formulae ψi(x) of width 2, expressing
the fact that Player 0 has a winning strategy from x ∈ V0 in n rounds. Let

ψ1(x) := ∃y(Exy ∧ ∀z¬Eyz)
ψi+1(x) := ∃y(Exy ∧ ∀z(Eyz → ψi(z)).
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Obviously, ψn has width 2, and G |= ψn(v) if, and only if, Player 0 can win
from position v in at most n rounds. Now, if Player 0 has a winning strategy,
then she also has one for winning in at most n rounds, where n = |V |,
since otherwise the game will be caught in a loop. Hence any instance G, v
of the Game problem (for strictly alternating games), with v ∈ V0, can be
reduced to the instance G, ψn(v) of the model-checking problem for first-order
formulae of width 2. �

Remark. The argument for PTIME-completeness applies also in fact to
propositional modal logic (ML) [55]. Instead of the formulae ψn(x) constructed
above, we take the modal formulae

ϕ1 := ��false, ϕn+1 := ��ϕn.

Corollary 3.1.7. The model-checking problem for ML is PTIME-complete.

If we consider a fixed formula ψ, Theorem 3.1.5 tells us that the data
complexity of first-order logic is much lower than the expression or combined
complexity.

Corollary 3.1.8. Let ψ be a first-order sentence. Then

{A : A finite,A |= ψ} ∈ ALOGTIME.

In particular, the evaluation problem for any fixed first-order sentence can be
computed deterministically in logarithmic space.

3.1.5 Encoding Finite Structures by Words

Complexity theory, at least in its current form, is based on classical computa-
tional models, most notably Turing machines, that take as inputs words over
a fixed finite alphabet. If we want to measure the complexity of problems
on finite structures in terms of these notions, we have to represent structures
by words so that they can be used as inputs for, say, Turing machines.
This may seem a trivial issue, and for purely algorithmic questions (say
for determining the cost of a model-checking algorithm) it indeed often is.
However, the programme of finite model theory is to link complexity with
logical definability in a deeper way, and for this purpose the represention of
structures by words needs careful consideration. It is also at the source of
some major unresolved problems that we shall discuss later.

At least implicitly, an encoding of a finite structure by a word requires
that we select an ordered representation of the structure. To see this, consider
the common encoding of a graph G = (V,E) by its adjacency matrix. Once
we have fixed an enumeration of V , say V = {v0, . . . , vn−1}, we can represent
the graph by the word w0 · · ·wn2−1, where win+j = 1 if (vi, vj) ∈ E and
win+j = 0 otherwise, i.e. row after row of the adjacency matrix. However, this
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encoding is not canonic. There are n! possibilities of enumerating V , so there
may be up to n! different encodings of the same graph by binary strings.
But if the graphs come along with a linear order, we do have a canonic way
of enumerating the elements and therefore a canonic encoding. Let us now
discuss encodings of arbitrary finite structures (of finite vocabulary) by words.

Definition 3.1.9. For any vocabulary τ , we write Fin(τ) for the class of
finite τ -structures and Ord(τ) for the class of all structures (A, <), where
A ∈ Fin(τ) and < is a linear order on A (the universe of A).

For any structure (A, <) ∈ Ord(τ) of cardinality n and for any k, we can
identify Ak with the set {0, . . . , nk − 1}, by associating each k-tuple with its
rank in the lexicographical ordering induced by < on Ak. Ordered structures
can be encoded as binary strings in many natural ways. The particular choice
of an encoding is not important. We only need the following conditions to be
satisfied.

Definition 3.1.10. An encoding code : Ord(τ) → Σ∗ (over any finite
alphabet Σ) is good if it identifies isomorphic structures, if its values are
polynomially bounded, if it is first-order definable, and if it allows to compute
efficiently the values of atomic statements. Formally, this means that the
following conditions are satisfied:

(i) code(A, <) = code(B, <) if and only if (A, <) ∼= (B, <).
(ii) |code(A, <)| ≤ p(|A|) for some polynomial p.
(iii) For all k ∈ N and all symbols σ ∈ Σ, there exists a first-order formula

βσ(x1, . . . , xk) of vocabulary τ ∪ {<} such that, for all structures
(A, <) ∈ Ord(τ) and all a ∈ Ak, the following equivalence holds:

(A, <) |= βσ(a) iff the a-th symbol of code(A, <) is σ.

(iv) Given code(A, <), a relation symbol R of τ , and (a representation of) a
tuple a, one can efficiently decide whether A |= Ra.

The precise meaning of ‘efficiently’ in clause (iv) depends on the context
(e.g. the problem that is studied, the machine model considered, and the level
of abstraction at which one is studying a given problem). For the analysis
of algorithms, one often assumes that atomic statements are evaluated
in constant (or even unit) time on a Random Access Machine (RAM). A
minimal requirement is that atoms can be evaluated in linear time and
logarithmic space.

A convenient encoding is given as follows. Let < be a linear order on
A and let A = (A,R1, . . . , Rt) be a τ -structure of cardinality n. Let �
be the maximal arity of R1, . . . , Rt. With each relation R of arity j, we
associate a string χ(R) = w0 · · ·wnj−10n

�−nj ∈ {0, 1}n�, where wi = 1
if the ith tuple of Aj belongs to R, and wi = 0 otherwise. Now, we set
code(A, <) = 1n0n

�−nχ(R1) · · ·χ(Rt).



3.1 Definability and Complexity 137

Exercise 3.1.11 Prove that this encoding is good. In fact, this encoding lends
itself to a very simple logical description in the following sense: if, besides
(or instead of) the linear ordering <, the corresponding successor relation S
and the constants 0, e for the first and last elements with respect to < are
available, then the encoding is definable by quantifier-free formulae βσ(x).

We can fix any good encoding function and understand ordered structures
to be represented by their encodings. With an unordered structure A, we asso-
ciate the set of all encodings code(A, <), where < is a linear order on A. So,
when we say that an algorithm M decides a classK of τ -structures, we actually
mean that M decides the set of encodings of structures in K, i.e. the language

code(K) := {code(A, <) : A ∈ K and < is a linear order on A}.

It thus makes sense to ask whether such a K belongs to a complexity class,
such as P or NP. In particular, we can ask how complicated it is to decide
the class of models of a logical sentence.

Word Structures

We have seen how classes of structures are encoded by languages. On the other
hand, any language L ⊆ Γ ∗ can also be considered as a class of structures over
the vocabulary {<} ∪ {Pa : a ∈ Γ}. Indeed, a word w = w0 . . . wm−1 ∈ Γ ∗ is
described by the structure B(w) with universe {0, . . . ,m− 1}, with the usual
interpretation of < and where Pa = {i : wi = a}.

Isomorphism Invariance

We have seen that encoding an unordered structure involves selecting an
ordering on the universe. In general, different orderings produce different
encodings. However, we want to consider properties of structures, not of their
encodings, An algorithm that decides whether a structure has a certain prop-
erty gets encodings code(A, <) as inputs and should produce the same answer
(yes or no) for all encodings of the same structure. That is, the outcome of
the algorithm should not depend on the particular ordered representation of
the structure, but only on its isomorphism type. In other words the algorithm
should be isomorphism-invariant. For most of the algorithms considered
here isomorphism invariance is obvious, but in general it is an undecidable
property.

Exercise 3.1.12 A first-order sentence ψ of vocabulary τ ∪ {<} is order-
invariant on a classK of τ -structures if its truth on any structure inK does not
depend on the choice of the linear ordering <. That is, for any A ∈ K and any
pair <, <′ of linear orderings on A we have that (A, <) |= ψ ⇐⇒ (A, <′) |= ψ.
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Prove that it is undecidable whether a given first-order formula is order-
invariant on finite structures. Hint: use Trakhtenbrot’s Theorem. A first-order
sentence ψ, in which < and Q do not occur, has a finite model with at least
two elements if, and only if, ψ → ∀x∃y(x < y ∨Qx) is not order-invariant.

3.2 Capturing Complexity Classes

We have already mentioned that the research programme of descriptive
complexity theory links complexity with logic in a deeper way than a
complexity analysis of model-checking algorithms can do. We are looking
for results saying that, on a certain domain D of structures, a logic L (such
as first-order logic, least fixed-point logic, or a fragment of second-order
logic) captures a complexity class Comp. This means that (1) for every fixed
sentence ψ ∈ L, the data complexity of evaluating ψ on structures from D is
a problem in the complexity class Comp, and (2) every property of structures
in D that can be decided with complexity Comp is definable in the logic L.

Two important examples of such results are Fagin’s Theorem, which
says that existential second-order logic captures NP on the class of all
finite structures, and the Immerman–Vardi Theorem, which says that least
fixed-point logic captures PTIME on the class of all ordered finite structures.
On ordered finite structures, logical characterizations of this kind are known
for all major complexity classes. On the other hand, it is not known, and
it is one of the major open problems in the area, whether PTIME can be
captured by any logic if no ordering is present.

In Sect. 3.2.1, we prove Fagin’s Theorem and relate it it to the spectrum
problem, which is a classical problem in mathematical logic. In Sect. 3.2.2, we
make precise the notion of a logic capturing a complexity class on a domain
of finite structures. We then show in Sect. 3.2.3 that on ordered structures,
second-order Horn logic captures polynomial time. In Sects. 3.2.4 and 3.2.5,
we discuss logics that capture logarithmic space complexity classes.

3.2.1 Capturing NP: Fagin’s Theorem

The spectrum of a first-order sentence ψ is the set of cardinalities of its
finite models, i.e.

spectrum(ψ) := {k ∈ N : ψ has a model with k elements}.

As early as 1952, Scholz [93] posed the problem of characterizing the
class of spectra, i.e. the subsets S ⊆ N for which there exists a first-order
sentence ψ such that spectrum(ψ) = S. A more specific problem is the
complementation problem for spectra, posed by Asser [7], who asked
whether the complement of each spectrum is also a spectrum.
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Note that the spectrum of a first-order sentence ψ of relational vocabulary
τ = {R1, . . . , Rm} can be viewed as the set of finite models of the existential
second-order sentence ∃R1 · · · ∃Rmψ. Since all relation symbols are quantified,
this is a sentence over the empty vocabulary, i.e. its models are just sets.
Thus there is a one-to-one correspondence between the spectra of first-order
sentences and the classes of finite models of existential second-order sentences
over the empty vocabulary. If we allow different vocabularies for existential
second-order sentences, this naturally leads to the notion of a generalized
spectrum [43].

Definition 3.2.1. Existential second-order logic, sometimes denoted by Σ1
1 ,

is the set of formulae of the form ∃R1 · · · ∃Rmϕ, where m ∈ N, R1, . . . , Rm
are relation symbols of any finite arity, and ϕ is a first-order formula.
A generalized spectrum is the class of finite models of a sentence in
existential second-order logic.

Example 3.2.2. The class of bipartite graphs is a generalized spectrum. It is
defined by the sentence

∃R∀x∀y(Exy → (Rx↔ ¬Ry)).

Exercise 3.2.3 Prove that the class of Hamiltonian graphs, the class of
k-colourable graphs (for any fixed k), and the class of graphs that admit
a perfect matching are generalized spectra. (A perfect matching in an
undirected graph G = (V,E) is a set M ⊆ E of edges such that every node
belongs to precisely one edge of M .)

Theorem 3.2.4 (Fagin). Let K be an isomorphism-closed class of finite
structures of some fixed non-empty finite vocabulary. Then K is in NP if and
only if K is definable by an existential second-order sentence, i.e. if and only
if K is a generalized spectrum.

Proof. First, we show how to decide a generalized spectrum. Let
ψ := ∃R1 · · · ∃Rmϕ be an existential second-order sentence. We shall
describe a non-deterministic polynomial-time algorithm M which, given an
encoding code(A, <) of a structure A, decides whether A |= ψ. First, M
non-deterministically guesses relations R1, . . . , Rm on A. A relation Ri is
determined by a binary string of length nri , where ri is the arity of Ri and
n = |A|. Then M decides whether (A, R1, . . . , Rm) |= ϕ. Since ϕ is first-order,
this can be done in logarithmic space and therefore in polynomial time.

Hence the computation of M consists of guessing a polynomial number
of bits, followed by a deterministic polynomial-time computation. Obviously,
M decides the class of finite models of ψ.

Conversely, let K be an isomorphism-closed class of τ -structures and let
M be a non-deterministic one-tape Turing machine which, given an input
code(A, <), decides in polynomial time whether A belongs to K. We shall con-
struct an existential second-order sentence ϕ whose finite models are precisely
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the structures in K. The construction given here is not quite the standard
one. It is optimized so that it can be easily adapted to other situations, in
particular for giving a capturing result for PTIME (see Section 3.2.3).

Let M = (Q,Σ, q0, F
+, F−, δ), where Q is the set of states, Σ is the

alphabet of M , q0 is the initial state, F+ and F− are the set of accepting and
rejecting states, and δ : (Q × Σ) → P(Q × Σ × {−1, 0, 1}) is the transition
function. Without loss of generality, we can assume that all computations of
M for an input code(A, <) reach an accepting or rejecting state after at most
nk − 1 steps (where n is the cardinality of A).

We represent a computation of M for an input code(A, <) by a tuple
X of relations on A, and we shall construct a first-order sentence ψM of
vocabulary τ ∪ {<} ∪ {X} such that

(A, < X) |= ψM ⇐⇒ the relations X represent an accepting
computation of M on code(A, <).

To represent the nk time and space parameters of the computation we
identify numbers up to nk − 1 with tuples in Ak. Given a linear order, the
associated successor relation and the least and greatest element are of course
definable. Note, further, that if a successor relation S and constants 0, e for
the first and last elements are available, then the induced successor relation
y = x + 1 on k-tuples is definable by a quantifier-free formula

∨

i<k

(∧

j<i

(xj = e ∧ yj = 0) ∧ Sxiyi ∧
∧

j>i

xj = yj

)
.

Hence, for any fixed integer m, the relation y = x + m is also expressible.
The description X of a computation of M on code(A, <) consists of the

following relations.

(1) For each state q ∈ Q, the predicate

Xq := {t ∈ Ak : at time t, M is in state q}.

(2) For each symbol σ ∈ Σ, the predicate

Yσ := {(t, a) ∈ Ak ×Ak : at time t, cell a contains the symbol σ}.

(3) The head predicate

Z := {(t, a) ∈ Ak ×Ak : at time t, the head of M is on position a}.

The sentence ψM is the universal closure of the conjunction

START ∧ COMPUTE ∧ END.

The subformula START enforces the condition that the configuration of
M at time t = 0 is C0(A, <), the input configuration on code(A, <). Recall
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that a good encoding is represented by first-order formulae βσ(x) (condition
(iii) of the definition of good encodings). We set

START := Xq0(0) ∧ Z(0, 0) ∧
∧

σ∈Σ

(
βσ(x) → Yσ(0, x)

)
.

The subformula COMPUTE describes the transitions from one configu-
ration to the next. It is the conjunction of the formulae

NOCHANGE :=
∧

σ∈Σ

(
Yσ(t, x) ∧ (y �= x) ∧ (t′ = t + 1) ∧ Z(t, y) → Yσ(t′, x)

)

and

CHANGE :=
∧

q∈Q
σ∈Σ

(
PRE[q, σ] →

∨

(q′,σ′,m)∈δ(q,σ)

POST[q′, σ′,m]
)

where

PRE[q, σ] := Xq(t) ∧ Z(t, x) ∧ Yσ(t, x) ∧ t
′ = t + 1

POST[q′, σ′,m] := Xq′(t
′) ∧ Yσ′(t′, x ∧ ∃y(x + m = y ∧ Z(t′, y)).

NOCHANGE expresses the fact that the contents of tape cells that are
not currently being scanned do not change from one configuration to the
next, whereas CHANGE enforces the changes in the relations Xq, Yσ, and Z
imposed by the transition function.

Finally, we have the formula

END :=
∧

q∈F−
¬Xq(t),

which enforces acceptance by forbidding rejection.

Claim 1. If M accepts code(A, <), then (A, <) |= (∃X)ψM .

This follows immediately from the construction of ψM , since for any
accepting computation of M on code(A, <) the intended meaning of X
satisfies ψM .

Claim 2. If (A, < X) |= ψM , then M accepts code(A, <).

Suppose that (A, < X) |= ψM . For any M -configuration C with state
q, head position p, and tape content w0 · · ·wnk−1 ∈ Σ∗, and for any time
j < nk, let CONF[C, j] be the conjunction of the atomic statements that
hold for C at time j, i.e.

CONF[C, j] := Xq(j) ∧ Z(j, p) ∧
nk−1∧

i=0

Ywi(j, i)

where j, p and i are the tuples in Ak representing the numbers j, p, and i.
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(a) Let C0 be the input configuration of M for input code(A, <). Since
(A, <,X) |= START, it follows that

(A, <,X) |= CONF[C0, 0].

(b) Owing to the subformula COMPUTE of ψM , we have, for all non-final
configurations C and all j < nk − 1, that

ψM ∧ CONF[C, j] |=
∨

C′∈Next(C)

CONF[C′, j + 1],

where Next(C) = {C′ : C %M C′} is the set of successor configurations
of C. It follows that there exists a computation

C0(A, <) = C0 %M C1 %M · · · %M Cnk−1 = Cend

of M on code(A, <) such that, for all j < nk,

(A, <,X) |= CONF[Cj , j].

(c) Since (A, <,X) |= END, the configuration Cend is not rejecting. Thus,
M accepts code(A, <).

This proves Claim 2. Clearly, one can axiomatize linear orders in first-order
logic. Hence

A ∈ K iff A |= (∃ <)(∃X)(“< is a linear order” ∧ ψM ).

This proves that K is a generalized spectrum. �
Exercise 3.2.5 Prove that every set in NP can be defined by a Σ1

1-sentence
whose first-order part has an ∀∗∃∗-prefix. Furthermore, prove that this
cannot be reduced to ∀∗. Finally, prove that it can be reduced to ∀∗ if

(a) existential second-order quantification over function symbols is allowed,
or

(b) if we consider only ordered structures with an explicitly given successor
relation and constants 0, e for the first and last elements.

There are several interesting consequences of Fagin’s Theorem. First of
all, the NP-completeness of SAT (the satisfiability problem for propositional
logic) is an easy corollary of Fagin’s Theorem.

Theorem 3.2.6 (Cook and Levin). SAT is NP-complete.

Proof. It is obvious that SAT is an NP-problem. It remains to show that
any problem K in NP can be reduced to SAT. Since, as explained above,
words can be viewed as special kinds of finite structures, we can assume that
K ⊆ Fin(τ) for some finite vocabulary τ . By Fagin’s Theorem, there exists a
first-order sentence ψ such that

K = {A ∈ Fin(τ) : A |= ∃R1 · · · ∃Rmψ}.
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We now present a logspace reduction that associates with every input
structure A ∈ Fin(τ) a propositional formula ψA. Given A, replace in ψ

• all subformulae ∃xiϕ by
∨
ai∈A ϕ[xi/ai],

• all subformulae ∀xiϕ by
∧
ai∈A ϕ[xi/ai], and

• all τ -atoms Pa by their truth values in A.

Since the τ -atoms can be evaluated efficiently, this translation is com-
putable efficiently. Viewing the atoms Ria as propositional variables, we have
obtained a propositional formula ψA such that

A ∈ K ⇐⇒ A |= ∃R1 · · · ∃Rmψ ⇐⇒ ψA ∈ SAT.

�

Fagin’s Theorem is readily extended to the higher levels of the polynomial-
time hierarchy , and thus to a correspondance between second-order logic
and the polynomial-time hierarchy.

Corollary 3.2.7. Let K be an isomorphism-closed class of finite structures of
some fixed non-empty vocabulary τ . Then code(K) is in the polynomial-time
hierarchy PH if and only if there exists a second-order sentence ψ such that
K is the class of finite models of ψ.

In the statement of Fagin’s Theorem, we required the vocabulary to be
non-empty. The case of the empty vocabulary, i.e. spectra, is different, because
the natural way of specifying a finite set is to write down its size n in binary,
and so the length of the encoding is logarithmic in n, whereas encodings of
structures of non-empty vocabularies have polynomial length. The formula
constructed in the proof of Fagin’s Theorem talks about computations that
are polynomial in n, and hence, in the case of spectra, exponential in the
length of the input. As a consequence, Fagin’s characterization of generalized
spectra in terms of NP implies a characterization of spectra in terms of
NEXPTIME. This has also been established in a different way in [71].

Corollary 3.2.8 (Jones and Selman). A set S ⊆ N is a spectrum if and
only if S ∈ NEXPTIME.

Hence the complementation problem for spectra is really a complexity-
theoretic problem: spectra are closed under complementation if, and only if,
NEXPTIME = Co-NEXPTIME.

Exercise 3.2.9 Prove that a set S ⊆ N is in EXPTIME if and only if it is a
categorical spectrum, i.e. the spectrum of a first-order sentence that has, up
to isomorphism, at most one model in any finite cardinality.
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3.2.2 Logics That Capture Complexity Classes

Fagin’s Theorem gives a precise correspondence between a logic and a com-
plexity class: a property of finite structures is decidable in non-deterministic
polynomial time exactly when it is definable in existential second-order
logic. The same is true for the correspondence between the polynomial-time
hierarchy and SO, as given by Corollary 3.2.7.

Note that the results on the model-checking complexity of first-order logic
do not give such precise correspondences. We know by Theorem 3.1.5 and
Corollary 3.1.8 that whenever a property of finite structures is first-order
definable, it is decidable in LOGSPACE and in fact even in ALOGTIME.
But we do not have a result giving the converse, and in fact the converse is
false. There are computationally very simple properties of finite structures
that are not first-order definable; one of them is the property of having an
even number of elements.

Hence the natural question arises of whether complexity classes other than
NP and the polynomial-time hierarchy can also be precisely captured by logics.
For most of the popular complexity classes, notably PTIME, we do not know
whether this is possible on the domain of all finite structures. But we have a lot
of interesting capturing results if we do not consider arbitrary finite structures,
but certain specific domains. In particular we have close correspondences
between logic and complexity for the domain of ordered finite structures.

By a model class we always mean a class K of structures of a fixed
vocabulary τ that is closed under isomorphism, i.e. if A ∈ K and A ∼= B, then
also B ∈ K. We speak of a domain of structures instead, if the vocabulary
is not fixed. For a domain D and vocabulary τ , we write D(τ) for the class
of τ -structures in D.

Intuitively, a logic L captures a complexity class Comp on D if the L-
definable properties of structures in D are precisely those that are decidable
in Comp. Here is a more detailed definition.

Definition 3.2.10. Let L be a logic, Comp a complexity class, and D a
domain of finite structures. We say that L captures Comp on D if

(1) For every vocabulary τ and every sentence ψ ∈ L(τ), the model-checking
problem for ψ on D(τ) is in the complexity class Comp.

(2) For every model class K ⊆ D(τ) whose membership problem is in Comp,
there exists a sentence ψ ∈ L(τ) such that

K = {A ∈ D(τ) : A |= ψ}.

By Fagin’s Theorem, the logic Σ1
1 captures NP on the domain of all

finite structures, and by Corollary 3.2.7, second-order logic captures the
polynomial-time hierarchy.

We sometimes simply write L ⊆ Comp to say that condition (1) of Defini-
tion 3.2.10 is satisfied for L and Comp on the domain of all finite structures.
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A classical result, from the ‘prehistory’ of finite model theory, says that
a language is regular (i.e. recognizable by a finite automaton) if, and only if,
it is definable in monadic second-order logic (MSO). As words can be viewed
as a special domain of structures, this is a capturing result in the sense of
Definition 3.2.10.

Theorem 3.2.11 (Büchi, Elgot, and Trakhtenbrot). On the domain of
word structures, monadic second-order logic captures the regular languages.

There are numerous extensions and ramifications of this theorem, most
of them established in the context of automata theory. We refer to [95, 97]
for a proof and further results. However, the emphasis of most of the work in
finite model theory is on structures more complicated structures than words,
and concerns complexity levels higher than the regular languages.

3.2.3 Capturing Polynomial Time on Ordered Structures

In this section, we present a logical characterization of polynomial time
on ordered structures, in terms of second-order Horn logic. Other such
characterizations will follow in subsequent sections.

Definition 3.2.12. Second-order Horn logic, denoted by SO-HORN, is
the set of second-order sentences of the form

Q1R1 · · ·QmRm∀y1 · · · ∀ys
t∧

i=1

Ci

where Qi ∈ {∃, ∀}, the Ri are relation symbols, and the Ci are Horn clauses
with respect to R1, . . . , Rm. More precisely, each Ci is an implication of the
form

H ← β1 ∧ · · · ∧ βm

where each βj is either a positive atom Rkz, or a first-order formula that
does not contain R1, . . . , Rm. The conjunction β1 ∧ · · · ∧ βm is called the
body of the clause. H , the head of the clause, is either an atom Rjz or the
Boolean constant 0 (for false).

Thus the first-order parts of the sentences in SO-HORN are universal
Horn sentences with respect to the quantified predicates R1, . . . , Rm, but
may use arbitrary first-order information about the ‘input predicates’ from
the underlying vocabulary. Σ1

1 -HORN denotes the existential fragment
of SO-HORN, i.e. the set of SO-HORN sentences where all second-order
quantifiers are existential.

Example 3.2.13. The problem GEN is a well-known P-complete prob-
lem [57, 70]. It may be presented as the set of structures (A,S, f, a) in the
vocabulary of one unary predicate S, one binary function f , and a constant a,
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such that a is contained in the closure of S under f . Clearly, the complement of
GEN is also P-complete. It is defined by the following sentence of Σ1

1 -HORN:

∃R∀y∀z
(

(Ry ← Sy) ∧ (Rfyz ← Ry ∧Rz) ∧ (0 ← Ra)
)
.

Example 3.2.14. The circuit value problem (CVP) is also P-complete [57],
even when restricted to circuits with a fan-in of 2 over NAND gates. Such
a circuit can be considered as a structure (V,E, I+, I−, out), where (V,E)
is a directed acyclic graph, I+ and I− are monadic predicates, and a is a
constant. Here Exy means that node x is one of the two input nodes for y;
I+ and I− contain the input nodes with values 1 and 0, respectively; and out
stands for the output node.

We shall take for granted that E is a connected, acyclic graph with a
fan-in of 2, sources I+∪ I−, and sink out. The formula ∃T∃F∀x∀y∀zϕ, where
ϕ is the conjunction of the clauses

Tx← I+x

Fx← I−x
Ty ← Fx ∧ Exy

Fz ← Tx ∧ Exz ∧ Ty ∧ Eyz ∧ y �= z

0 ← Tx ∧ Fx

Tx← x = out

then states that the circuit (V,E, I+, I−, out) evaluates to 1.

Exercise 3.2.15 To justify the definition of SO-HORN, show that the
admission of quantifiers over functions, or of first-order prefixes of a more
general form, would make the restriction to Horn clauses pointless. Any such
extension of SO-HORN has the full power of second-order logic.

Theorem 3.2.16. Every sentence ψ ∈ SO-HORN is equivalent to some
sentence ψ′ ∈ Σ1

1 -HORN.

Proof. It suffices to prove the theorem for formulae of the form

ψ := ∀P∃R1 · · · ∃Rm∀zϕ,

where ϕ is a conjunction of Horn clauses. An arbitrary formula in SO-HORN
may then be brought to existential form by successively removing the inner-
most universal second-order quantifier. We first prove the following claim.

Claim. A formula ∃R∀zϕ(P,R) ∈ Σ1
1 -HORN is true for all predicates P

(on a given structure A) if it holds for those predicates P that are false at at
most one point.
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Let k be the arity of P . For every k-tuple a, let P a = Ak − {a}, i.e. the
predicate that is false at a and true at all other points. By assumption, there
exist predicates R

a
such that

(A, P a, R
a
) |= ∀zϕ.

Now, take any predicate P �= Ak, and let Ri :=
⋂
a�∈P Rai . We claim that

(A, P,R) |= ∀zϕ.
Suppose that this is false; there then exists a relation P �= Ak, a clause C

of ϕ, and an assignment ρ : {z1 . . . , zs} → A such that (A, P,R) |= ¬C[ρ]. We
now show that there then exists a tuple a such that also (A, P a, R

a
) |= ¬C[ρ].

If the head of C[ρ] is Pu, then take a = u �∈ P . If the head of C[ρ] is Riu,
then choose some a �∈ P such that u �∈ Rai ; such an a must exist because u �∈
Ri. Finally, if the head is 0, take an arbitrary a �∈ P . The head of C[ρ] is clearly
false in (A, P a, R

a
). The atom Pa does not occur in the body of C[ρ], because

a �∈ P and all atoms in the body of C[ρ] are true in (A, P,R); all other atoms of
the form Pv that might occur in the body of the clause remain true for P a also.
Moreover, every atom Riv in the body remains true if Ri is replaced by Rai
(because Ri ⊆ Rai ). This implies that the clause (A, P a, R

a
) |= ¬C[ρ], and thus

(A, P a, R
a
) |= ¬∀zϕ,

which contradicts our assumption.

Thus the claim has been established. This implies that the original
formula ψ is equivalent to the conjunction

∃R∀zϕ0 ∧ ∀y(∃R)∀zϕ1,

where ϕ1 and ϕ0 are obtained from ϕ by replacing every atom Pu by u �= y
(which is true iff u ∈ P y), or by (u = u) (which is always true), respec-
tively. It is easy to transform this conjunction into an equivalent formula
in Σ1

1 -HORN. �

Theorem 3.2.17. If ψ ∈ SO-HORN, then the set of finite models of ψ is in
PTIME.

Proof. We can restrict our attention to sentences ψ = ∃R1 · · · ∃Rm∀z
∧
iCi in

Σ1
1 -HORN. Given any finite structure A of appropriate vocabulary, we reduce

the problem of whether A |= ψ to the satisfiability problem for a propositional
Horn formula by the same technique as in the proof of Theorem 3.2.6.

Replace the universal quantifiers ∀zi by conjunctions over the elements
ai ∈ A and omit the quantifier prefix. Then substitute in the body of each
clause the first-order formulae that do not involve R1, . . . , Rm by their truth
values in A. If there is any clause that is already made false by this partial
interpretation (i.e. the head is false and all atoms in the body are true),
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then reject ψ. Otherwise, omit all clauses that are already made true (i.e.
the head is true or a conjunct of the body is false) and delete the conjuncts
already interpreted from the remaining clauses. Consider the atoms Riu as
propositional variables. The resulting formula is a propositional Horn formula
whose length is polynomially bounded in the cardinality of A and which is
satisfiable if and only if A |= ψ. The satisfiability problem for propositional
Horn formulae can be solved in linear time. �

Theorem 3.2.18 (Grädel). On ordered structures, SO-HORN and
Σ1

1 -HORN capture PTIME.

Proof. This follows from an analysis of our proof of Fagin’s Theorem. If the
Turing machine M happens to be deterministic, then the sentence ∃XψM
constructed in that proof can easily be transformed to an equivalent sentence
in Σ1

1 -HORN.
To see this, recall that ψM is the universal closure of START ∧

NOCHANGE ∧ CHANGE ∧ END. The formulae START, NOCHANGE,
and END are already in Horn form. The formula CHANGE has the form

∧

q∈Q
σ∈Σ

(
PRE[q, σ] →

∨

(q′,σ′,m)∈δ(q,σ)

POST[q′, σ′,m]
)
,

where

PRE[q, σ] := Xq(t) ∧ Z(t, x) ∧ Yσ(t, x) ∧ t
′ = t + 1

POST[q′, σ′,m] := Xq′(t
′) ∧ Yσ′(t′, x) ∧ ∃y(x + m = y ∧ Z(t′, y)).

For a deterministic M , we have for each pair (q, σ) a unique value
δ(q, σ) = (q′, σ′,m). In this case, the implication PRE[q, σ] → POST[q′, σ′,m]
can be replaced by the conjunction of the Horn clauses

PRE[q, σ] → Xq′(t
′)

PRE[q, σ] → Yσ′ (t′, x)

PRE[q, σ] ∧ y = x + m→ Z(t′, y).

�

Exercise 3.2.19 Prove that, contrary to the case of Fagin’s Theorem, the
assumption that a linear order is explicitly available cannot be eliminated,
since linear orderings are not axiomatizable by Horn formulae.

Exercise 3.2.20 In [47], where the results of this section were proved, a
weaker variant of SO-HORN was used, in which the body may not contain
arbitrary first-order formulae of the input vocabulary, but only atoms and
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negated input atoms. Prove that the two variants of SO-HORN are equivalent
on ordered structures with a successor relation and with constants for the
first and last elements, but not on ordered structures without a successor
relation. Hint: sentences in the weak variant of SO-HORN are preserved
under substructures, i.e. if A |= ψ and B ⊆ A, then also B |= ψ.

3.2.4 Capturing Logarithmic Space Complexity

In this section and the next, we describe two approaches to defining logics
that capture logarithmic space complexity classes on ordered structures. The
first approach is based on restrictions of second-order logic, similarly to the
definition of SO-HORN, whereas the second technique adds transitive closure
operators to first-order logic.

Definition 3.2.21. Second-order Krom logic, denoted by SO-KROM, is
the set of second-order formulae

Q1R1 · · ·QmRm∀y1 · · · ∀ys
t∧

i=1

Ci

where every clause Ci is a disjunction of at most two literals of the form
(¬)Riy and of a first-order formula that does not contain R1, . . . , Rm. Such
formulae are Krom (i.e. in 2-CNF) with respect to the quantified predicates.
Σ1

1 -KROM is the existential fragment of SO-KROM. The intersection of
Σ1

1 -HORN and Σ1
1 -KROM is denoted by Σ1

1 -KROM-HORN.

Example 3.2.22. The reachability problem (‘Is there a path in the graph
(V,E) from a to b?’) is complete for NLOGSPACE via first-order translations.
Its complement is expressible by a formula from Σ1

1-KROM-HORN,

∃T∀x∀y∀z
(
Txx ∧ (Txz ← Txy ∧Eyz) ∧ (0 ← Tab)

)
.

As in the case of SO-HORN, it is also known that every sentence of
SO-KROM is equivalent to a sentence of Σ1

1 -KROM (see [47]).

Proposition 3.2.23. For every sentence ψ ∈ SO-KROM, the set of finite
models of ψ is in NLOGSPACE.

The proof is analogous to the proof of Theorem 3.2.17. It uses the fact
that 2-SAT, the satisfiability problem for propositional Krom formulae, is in
NLOGSPACE. On ordered structures, SO-KROM captures NLOGSPACE.
We shall indicate the general idea of the proof here. Suppose that M is an
O(log n)-space-bounded non-deterministic Turing machine with an input tape
carrying a representation code(A, <) of an input structure, and one or more
separate work tapes. A reduced configuration of M reflects the control state
of M , the content of the work tapes, and the positions of the heads on the
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input tape and the work tapes. Thus a configuration is specified by a reduced
configuration together with the input. Given that reduced configurations of M
for the input code(A, <) have a logarithmic length with respect to |A|, we can
represent them by tuples c = c1, . . . , cr ∈ Ar for fixed r. The initial reduced
configuration on any input code(A, <) is represented by the tuple 0. Assume
that M has a single accepting state, say state 1, and let the first component of
the reduced configuration describe the state. The condition that y represents
an accepting configuration is then expressed by ACCEPT(y) := (y1 = 1).
Further, it is not difficult (although it is somewhat lengthy) to write down
a quantifier-free formula NEXT(x, y) such that, for every successor structure
(A, S, 0, e) and every tuple c representing a reduced configuration,

(A, S, 0, e) |= NEXT(c, d)

if, and only if, d represents a reduced successor configuration of c for the input
(A, <). Taking the disjunctive normal form NEXT(x, y) =

∨
i NEXTi(x, y),

we can express the staement that M does not accept the input code(A, <)
by the sentence

ψM :=∃R∀x∀y
(
R0 ∧

∧

i

(Ry ← Rx ∧NEXTi(x, y))

∧ (� ← Ry ∧ACCEPT(y)
)
.

This proves that, on ordered structures, the complement of every problem
in NLOGSPACE is definable in SO-KROM. Since NLOGSPACE is closed
under complements, and since the formula ψM is in fact in Σ1

1 -KROM-HORN,
we have proved the following result.

Theorem 3.2.24 (Grädel). On ordered structures, the logics SO-KROM,
Σ1

1 -KROM, and Σ1
1 -KROM-HORN capture NLOGSPACE.

Remark. The characterizations of P and NLOGSPACE by second-order
Horn and Krom logics can also be reformulated in terms of generalized
spectra. The notion of a generalized spectrum can be appropriately modified
to the notions of a generalized Horn spectrum and a generalized Krom
spectrum. Let a model class be any isomorphism-closed class of structures of
some fixed finite signature. Fagin’s Theorem and Theorems 3.2.18 and 3.2.24
can then be summarized as follows:

• A model class of finite structures is NP iff it is a generalized spectrum.
• A model class of ordered structures is in P iff it is a generalized Horn

spectrum.
• A model class of ordered structures is in NLOGSPACE iff it is a

generalized Krom spectrum.
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3.2.5 Transitive Closure Logics

One of the limitations of first-order logic is the lack of a mechanism for
unbounded iteration or recursion. This has motivated the study of more
powerful languages that add recursion in one way or another to first-order
logic. A simple but important example of a query that is not first-order
expressible is reachability. By adding transitive closure operators to FO, we
obtain a natural family of logics with a recursion mechanism.

Definition 3.2.25. Transitive closure logic, denoted by TC, is obtained
by augmenting the syntax of first order logic by the following rule for building
formulae:

Let ϕ(x, y) be a formula with variables x = x1, . . . , xk and y = y1, . . . , yk,
and let u and v be two k-tuples of terms. Then

[tcx,y ϕ(x, y)](u, v)

is a formula which says that the pair (u, v) is contained in the transitive
closure of the binary relation on k-tuples that is defined by ϕ. In other words,
A |= [tcx,y ϕ(x, y)](a, b) if, and only if, there exist an n ≥ 1 and tuples
c0, . . . , cn in Ak such that c0 = a, cn = b, and A |= ϕ(ci, ci+1), for all i < n.

Of course, it is understood that ϕ can contain free variables other than
x and y; these will also be free in the new formula. Moreover, transitive
closure logic is closed under the usual first-order operations. We can thus
build Boolean combinations of TC-formulae, we can nest TC-operators, etc.

Example 3.2.26. A directed graph G = (V,E) is acyclic if, and only
if, G |= ∀z[tcx,yExy](z, z). It is well known that a graph is bipartite
(2-colourable) if, and only if, it does not contain a cycle of odd length. This is
expressed by the TC-formula ∀x∀y([tcx,yx �= y∧∃zExz∧Ezy](x, y) → ¬Eyx).

Exercise 3.2.27 Show that, for every ψ ∈ TC, the set of finite models of ψ
is decidable in NLOGSPACE.

The same idea as in the proof of Theorem 3.2.24 shows that, on ordered
structures, TC captures NLOGSPACE. The condition that an O(log n)-space-
bounded Turing machine M accepts code(A, <) is expressed by the formula

∃z
(
ACCEPT(z) ∧ [tcx,y NEXT(x, y)](0, z)

)
.

Theorem 3.2.28 (Immerman). On ordered structures, TC captures
NLOGSPACE.

An interesting variant of TC is deterministic transitive closure
logic, denoted DTC, which makes definable the transitive closure of any
deterministic definable relation. The syntax of DTC is analogous to TC,
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allowing us to build formulae of the form [dtcx,y ϕ(x, y)](u, v), for any
formula ϕ(x, y). The semantics can be defined by the equivalence

[dtcx,y ϕ(x, y)](u, v) ≡ [tcx,y ϕ(x, y) ∧ ∀z(ϕ(x, z) → y = z)](u, v).

It is clear that transitive closures of deterministic relations can be checked
by deterministic Turing machines using only logarithmic space. Conversely,
acceptance by such machines amounts to deciding a reachability problem (‘is
there an accepting configuration that is reachable from the input configura-
tion?’) with respect to the successor relation %M on configurations. Of course,
for deterministic Turing machines, %M is deterministic. We already know
that on ordered structures, %M is first-order definable, and hence acceptance
can be defined in DTC.

Theorem 3.2.29 (Immerman). On ordered finite structures DTC captures
LOGSPACE.

In particular, separating DTC from TC on ordered finite structures would
amount to separating the complexity classes LOGSPACE and NLOGSPACE.
However, on the domain of arbitrary finite structures, we can actually
separate these logics [51].

Given a graph G = (V,E), let 2G be the graph with vertex set V × {0, 1}
and edges 〈(u, i), (v, j)〉 for (u, v) ∈ E, i, j ∈ {0, 1}. It is easy to see that on
the class of all ‘double graphs’ 2G, DTC collapses to FO. Take any tuple
ū = (u1, i1), . . . , (uk, ik) of vertices in a double graph 2G, and let the closure
of ū be the set {u1, . . . , uk} × {0, 1}. Switching the second component of any
node is an automorphism of 2G, and hence no definable deterministic path
from u can leave the closure of u. That is, if 2G |= [dtcx,yϕ(x, y)](u, v), then
each node of v belongs to the closure of u. Therefore DTC-definable paths
are of bounded length, and can thus be defined by first-order formulae. On
the other hand the usual argument (based on Ehrenfeucht–Fräıssé games)
showing that transitive closures are not first-order definable applies also to
the class of double graphs. Hence DTC is strictly less powerful than TC on
double graphs. In [51] other graph classes are identified on which TC is more
expressive than DTC. An interesting example is the class of all hypercubes.

Theorem 3.2.30. On finite graphs, DTC � TC.

TC is a much richer and more complicated logic than DTC also in
other respects. For instance, DTC has a positive normal form: formulae
¬[dtcxyϕ(x, y)](u, v) can be rewritten using the dtc operator only positively.
On the other hand, the alternation hierarchy in TC is strict [52].

3.3 Fixed-Point Logics

One of the distinguishing features of finite model theory compared with
other branches of logic is the eminent role of various kinds of fixed-point
logics. Fixed-point logics extend a basic logical formalism (such as first-order
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logic, conjunctive queries, or propositional modal logic) by a constructor for
forming fixed points of relational operators .

What do we mean by a relational operator? Note that any formula
ψ(R, x) of vocabulary τ ∪{R} can be viewed as defining, for every τ -structure
A, an update operator Fψ : P(Ak) → P(Ak) on the class of k-ary relations
on A, namely

Fψ : R �→ {a : (A, R) |= ψ(R, a)}.
A fixed point of Fψ is a relation R for which Fψ(R) = R. In general, a

fixed point of Fψ need not exist, or there may exist many of them. However,
if R happens to occur only positively in ψ, then the operator Fψ is monotone,
and in that case there exists a least relation R ⊆ Ak such that Fψ(R) = R.
The most influential fixed-point formalisms in logic are concerned with least
(and greatest) fixed points, so we shall discuss these first. In finite model
theory, a number of other fixed-point logics are important as well, and the
structure, expressive power, and algorithmic properties of these logics have
been studied intensively. We shall discuss them later.

3.3.1 Some Fixed-Point Theory

There is a well-developed mathematical theory of fixed points of monotone
operators on complete lattices. A complete lattice is a partial order (A,≤)
such that each set X ⊆ A has a supremum (a least upper bound) and an
infimum (a greatest lower bound). Here we are interested mainly in power
set lattices (P(Ak),⊆) (where A is the universe of a structure), and later in
product lattices (P(B1) × · · · × P(Bm),⊆). For simplicity, we shall describe
the basic facts of fixed-point theory for lattices (P(B),⊆), where B is an
arbitrary (finite or infinite) set.

Definition 3.3.1. Let F : P(B) → P(B) be a function.

(1) X ⊆ B is a fixed point of F if F (X) = X .
(2) A least fixed point or a greatest fixed point of F is a fixed point X of

F such that X ⊆ Y or Y ⊆ X , respectively, for each fixed point Y of F .
(3) F is monotone, if X ⊆ Y =⇒ F (X) ⊆ F (Y ) for all X,Y ⊆ B.

Theorem 3.3.2 (Knaster and Tarski). Every monotone operator
F : P(B) → P(B) has a least fixed point lfp(F ) and a greatest fixed point
gfp(F ). Further, these fixed points may be written in the form

lfp(F ) =
⋂
{X : F (X) = X} =

⋂
{X : F (X) ⊆ X}

gfp(F ) =
⋃
{X : F (X) = X} =

⋃
{X : F (X) ⊇ X}.

Proof. Let S = {X ⊆ B : F (X) ⊆ X} and Y =
⋂
S. We first show that Y

is a fixed point of F .

F (Y ) ⊆ Y . Clearly, Y ⊆ X for all X ∈ S. As F is monotone, it follows that
F (Y ) ⊆ F (X) ⊆ X . Hence F (Y ) ⊆

⋂
S = Y .
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Y ⊆ F (Y ). As F (Y ) ⊆ Y , we have F (F (Y )) ⊆ F (Y ), and hence F (Y ) ∈ S.
Thus Y =

⋂
S ⊆ F (Y ).

By definition, Y is contained in all X such that F (X) ⊆ X . In particular
Y is contained in all fixed points of F . Hence Y is the least fixed point of F .

The argument for the greatest fixed point is analogous. �

Least fixed points can also be constructed inductively. We call an operator
F : P(B) → P(B) inductive if the sequence of its stages Xα (where α is
an ordinal), defined by

X0 := ∅,
Xα+1 := F (Xα), and

Xλ :=
⋃

α<λ

Xα for limit ordinals λ,

is increasing, i.e. if Xβ ⊆ Xα for all β < α. Obviously, monotone operators
are inductive. The sequence of stages of an inductive operator eventually
reaches a fixed point, which we denote by X∞. The least ordinal β for which
Xβ = Xβ+1 = X∞ is called cl(F ), the closure ordinal of F .

Lemma 3.3.3. For every inductive operator F : P(B) → P(B),
|cl(F )| ≤ |B|.

Proof. Let |B|+ denote the smallest cardinal greater than |B|. Suppose that
the claim is false for F . Then for each α < |B|+ there exists an element
xα ∈ Xα+1 − Xα. The set {xα : α < |B|+} is a subset of B of cardinality
|B|+ > |B|, which is impossible. �

Proposition 3.3.4. For monotone operators, the inductively constructed
fixed point coincides with the least fixed point, i.e. X∞ = lfp(F ).

Proof. As X∞ is a fixed point, lfp(X) ⊆ X∞. For the converse, we show
by induction that Xα ⊆ lfp(F ) for all α. As lfp(F ) =

⋂
{Z : F (Z) ⊆ Z}, it

suffices to show that Xα is contained in all Z for which F (Z) ⊆ Z.
For α = 0, this is trivial. By monotonicity and the induction hypothesis,

we have Xα+1 = F (Xα) ⊆ F (Z) ⊆ Z. For limit ordinals λ with Xα ⊆ Z for
all α < λ we also have Xλ =

⋃
α<λ ⊆ Z. �

The greatest fixed point can be constructed by a dual induction, starting
with Y 0 = B, by setting Y α+1 := F (Y α) and Y λ =

⋂
α<λ Y

α for limit
ordinals. The decreasing sequence of these stages then eventually converges
to the greatest fixed point Y ∞ = gfp(F ).

The least and greatest fixed points are dual to each other. For every
monotone operator F , the dual operator F d : X �→ F (X) (where X denotes
the complement of X) is also monotone, and we have that

lfp(F ) = gfp(F d) and gfp(F ) = lfp(F d).
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Exercise 3.3.5 Prove this.

Everything said so far holds for operators on arbitrary (finite or infi-
nite) power set lattices. In finite model theory, we consider operators
F : P(Ak) → P(Ak) for finite A only. In this case the inductive constructions
will reach the least or greatest fixed point in a polynomial number of steps.
As a consequence, these fixed points can be constructed efficiently.

Lemma 3.3.6. Let F : P(Ak) → P(Ak) be a monotone operator on a finite
set A. If F is computable in polynomial time (with respect to |A|), then so
are the fixed points lfp(F ) and gfp(F ).

3.3.2 Least Fixed-Point Logic

LFP is the logic obtained by adding least and greatest fixed points to
first-order logic.

Definition 3.3.7. Least fixed-point logic (LFP) is defined by adding to the
syntax of first-order logic the following least fixed-point formation rule: If
ψ(R, x) is a formula of vocabulary τ ∪ {R} with only positive occurrences
of R, if x is a tuple of variables, and if t is a tuple of terms (such that the
lengths of x and t match the arity of R), then

[lfpRx . ψ](t) and [gfpRx . ψ](t)

are formulae of vocabulary τ . The free first-order variables of these formulae
are those in (free(ψ)− {x : x in x}) ∪ free(t).
Semantics. For any τ -structure A providing interpetations for all free
variables in the formula, we have that A |= [lfpRx . ψ](t) if tA (the tuple of
elements of A interpreting t) is contained in lfp(Fψ), where Fψ is the update
operator defined by ψ on A. Similarly for greatest fixed points.

Example 3.3.8. Here is a fixed-point formula that defines the transitive
closure of the binary predicate E:

TC(u, v) := [lfpTxy . Exy ∨ ∃z(Exz ∧ Tzy)](u, v).

Note that in a formula [lfpRx . ϕ](t), there may be free variables in ϕ
additional to those in x, and these remain free in the fixed-point formula.
They are often called parameters of the fixed-point formula. For instance,
the transitive closure can also be defined by the formula

ϕ(u, v) := [lfpTy . Euy ∨ ∃x(Tx ∧ Exy)](v)

which has u as a parameter.

Exercise 3.3.9 Show that every LFP-formula is equivalent to one without
parameters (at the cost of increasing the arity of the fixed-point variables).
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Example 3.3.10. Let ϕ := ∀y(y < x→ Ry) and let (A,<) be a partial order.
The formula [lfpRx . ϕ](x) then defines the well-founded part of <. The
closure ordinal of Fϕ on (A,<) is the length of the longest well-founded
initial segment of <, and (A,<) |= ∀x[lfpRx . ϕ](x) if, and only if, (A,<) is
well-founded.

Exercise 3.3.11 Prove that the LFP-sentence

ψ := ∀y∃zFyz ∧ ∀y[lfpRy . ∀x(Fxy → Rx)](y)

is an infinity axiom, i.e. it is satisfiable but does not have a finite model.

Example 3.3.12. The Game query asks, given a finite game G = (V, V0, V1, E),
to compute the set of winning positions for Player 0 (see Section 3.1.3). The
Game query is LFP-definable, by use of [lfpWx . ϕ](x) with

ϕ(W,x) := (V0x ∧ ∃y(Exy ∧Wy)) ∨ (V1 ∧ ∀y(Exy →Wy)).

The Game query plays an important role for LFP. It can be shown that
every LFP-definable property of finite structures can be reduced to Game by
a quantifier-free translation [31]. Hence Game is complete for LFP via this
notion of reduction, and thus a natural candidate if one is trying to separate
a weaker logic from LFP.

Exercise 3.3.13 Prove that the problem GEN and the circuit value problem
(see Examples 3.2.13 and 3.2.14) are expressible in LFP.

The duality between the least and greatest fixed points implies that for
any formula ψ,

[gfpRx . ψ](t) ≡ ¬[lfpRx . ¬ψ[R/¬R]](t),

where ψ[R/¬R] is the formula obtained from ψ by replacing all occurrences
of R-atoms by their negations. (As R occurs only positively in ψ, the same
is true for ¬ψ[R/¬R].) Because of this duality, greatest fixed points are
often omitted in the definition of LFP. On the other hand, it is sometimes
convenient to keep the greatest fixed points, and to use the duality (and de
Morgan’s laws) to translate LFP-formulae to negation normal form, i.e. to
push negations all the way to the atoms.

Capturing Polynomial Time

From the fact that first-order operations are polynomial-time computable and
from Lemma 3.3.6, we can immediately conclude that every LFP-definable
property of finite strucures is computable in polynomial time.

Proposition 3.3.14. Let ψ be a sentence in LFP. It is decidable in poly-
nomial time whether a given finite structure A is a model of ψ. In short,
LFP ⊆ PTIME.
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Obviously LFP, is a fragment of second-order logic. Indeed, by the
Tarski–Knaster Theorem,

[lfpRx . ψ(R, x)](y) ≡ ∀R((∀x(ψ(R, x) → Rx)) → Ry).

We next relate LFP to SO-HORN.

Theorem 3.3.15. Every formula ψ ∈ SO-HORN is equivalent to some
formula ψ∗ ∈ LFP.

Proof. By Theorem 3.2.16, we can assume that ψ = (∃R1) · · · (∃Rm)ϕ ∈
Σ1

1 -HORN. By combining the predicates R1, . . . , Rm into a single predicate
R of larger arity and by renaming variables, it is easy to transform ψ into an
equivalent formula

ψ′ := ∃R∀x∀y
∧

i

Ci ∧
∧

j

Dj,

where the Ci are clauses of the form Rx ← αi(R, x, y) (with exactly
the same head Rx for every i) and the Dj are clauses of the form
0 ← βj(R, x, y). The clauses Ci define, on every structure A, a monotone
operator F : R �→ {x :

∨
i ∃yαi(x, y)}. Let Rω be the least fixed point of this

operator. Obviously A |= ¬ψ if and only if A |= βi(Rω, a, b) for some i and
some tuple a, b. But Rω is defined by the fixed-point formula

αω(x) := [lfpRx .
∨

i

∃yαi(x, y)](x).

Hence, for β := ∃x∃y
∨
j βj(x, y), ψ is equivalent to the formula

ψ∗ := ¬β[Rz/αω(z)] obtained from ¬β by substituting all occurrences
of atoms Rz by αω(z). Clearly, this formula is in LFP. �

Hence SO-HORN ≤ LFP ≤ SO. As an immediate consequence of
Theorems 3.2.18 and 3.3.15 we obain the Immerman–Vardi Theorem.

Theorem 3.3.16 (Immerman and Vardi). On ordered structures, least
fixed-point logic captures polynomial time.

However, on unordered structures, SO-HORN is strictly weaker than LFP.

3.3.3 The Modal μ-Calculus

A fragment of LFP that is of fundamental importance in many areas
of computer science (e.g. controller synthesis, hardware verification, and
knowledge representation) is the modal μ-calculus (Lμ). It is obtained by
adding least and greatest fixed points to propositional modal logic (ML). In
other words Lμ relates to ML in the same way as LFP relates to FO.

Modal logics such as ML and the μ-calculus are evaluated on transition
systems (alias Kripke structures, alias coloured graphs) at a particular node.
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Given a formula ψ and a transition system G, we write G, v |= ψ to denote
that G holds at node v of G. Recall that formulae of ML, for reasoning
about transition systems G = (V, (Ea)a∈A, (Pb)b∈B), are built from atomic
propositions Pb by means of the usual propositional connectives and the
modal operators 〈a〉 and [a]. That is, if ψ is a formula and a ∈ A is an action,
then we can build the formulae 〈a〉ψ and [a]ψ, with the following semantics:

G, v |= 〈a〉ψ iff G,w |= ψ for some w such that (v, w) ∈ Ea,
G, v |= [a]ψ iff G,w |= ψ for all w such that (v, w) ∈ Ea.

If there is only one transition relation, i.e. A = {a}, then we simply write �

and � for [a] and 〈a〉, respectively.
ML can be viewed as an extension of propositional logic. However, in our

context it is more convenient to view it as a simple fragment of first-order
logic. A modal formula ψ defines a query on transition systems, associating
with G a set of nodes ψG := {v : G, v |= ψ}, and this set can be defined
equivalently by a first-order formula ψ∗(x). This translation maps atomic
propositions Pb to atoms Pbx, it commutes with the Boolean connectives,
and it translates the modal operators by use of quantifiers as follows:

(〈a〉ψ)∗(x) := ∃y(Eaxy ∧ ψ∗(y))
([a]ψ)∗(x) := ∀y(Eaxy → ψ∗(y)).

Note that the resulting formula has width 2 and can thus be written with
only two variables. We have proved the following proposition.

Proposition 3.3.17. For every formula ψ ∈ ML, there exists a first-order
formula ψ∗(x) of width 2, which is equivalent to ψ in the sense that G, v |= ψ
iff G |= ψ∗(v).

The modal fragment of first-order logic is the image of propositional
modal logic under this translation. It has turned out that the modal fragment
has interesting algorithmic and model-theoretic properties (see [3] and the
references given there).

Definition 3.3.18. The modal μ-calculus Lμ extends ML (including
propositional variables X,Y, . . . , which can be be viewed as monadic second-
order variables) by the following rule for building fixed point formulae: If ψ is
a formula in Lμ and X is a propositional variable that only occurs positively
in ψ, then μX.ψ and νX.ψ are also Lμ-formulae.

The semantics of these fixed-point formulae is completely analogous
to that for LFP. The formula ψ defines on G (with universe V , and with
interpretations for other free second-order variables that ψ may have besides
X) the monotone operator Fψ : P(V ) → P(V ) assigning to every set X ⊆ V
the set ψG(X) := {v ∈ V : (G,X), v |= ψ}. Now,

G, v |= μX.ψ iff v ∈ lfp(Fψ)
G, v |= νX.ψ iff v ∈ gfp(Fψ).
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Example 3.3.19. The formula μX.ϕ ∨ 〈a〉X asserts that there exists a path
along a-transitions to a node where ϕ holds.

The formula ψ := νX.
(∨

a∈A〈a〉true ∧
∧
a∈A[a]X

)
expresses the assertion

that the given transition system is deadlock-free. In other words, G, v |= ψ if no
path from v in G reaches a dead end (i.e. a node without outgoing transitions).

Finally, the formula νX.μY.〈a〉((ϕ ∧X)∨ Y ) says that there exists a path
from the current node on which ϕ holds infinitely often.

Exercise 3.3.20 Prove that the formulae in Example 3.3.19 do indeed express
the stated properties.

The translation from ML into FO is readily extended to a translation
from Lμ into LFP.

Proposition 3.3.21. Every formula ψ ∈ Lμ is equivalent to a formula
ψ∗(x) ∈ LFP.

Proof. By induction. A formula of form μX.ϕ is translated to [lfpXx . ϕ∗](x),
and similarly for greatest fixed points. �

Further the argument proving that LFP can be embedded into SO also
shows that Lμ is a fragment of MSO.

Let us turn to algorithmic issues. The complexity of the model-checking
problem for Lμ is a major open problem, as far as combined complexity and
expression complexity are concerned (see Section 3.3.5). However, the data
complexity can be settled easily.

Proposition 3.3.22 (data complexity of Lμ). Fix any formula ψ ∈ Lμ.
Given a finite transition system G and a node v, it can be decided in
polynomial time whether G, v |= ψ. Further, there exist ψ ∈ Lμ for which the
model checking problem is PTIME-complete.

Proof. As Lμ is a fragment of LFP, the first claim is obvious. For the second
claim, recall that the Game problem for strictly alternating games is PTIME-
complete (see Section 3.1.2). Player 0 has a winning strategy from position
v ∈ V0 in the game G = (V, V0, V1, E) if, and only if, G, v |= μX.��X . �

Despite this result, it is not difficult to see that the μ-calculus does not
suffice to capture PTIME, even in very restricted scenarios such as word
structures. Indeed, as Lμ is a fragment of MSO, it can only define regular
languages, and of course, not all PTIME-languages are regular. However, we
shall see in Section 3.5.3 that there is a multidimensional variant of Lμ that
captures the bisimulation-invariant fragment of PTIME.

For more information on the μ-calculus, we refer to [5, 21, 56] and the
references therein.
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3.3.4 Parity Games

For least fixed-point logics, the appropriate evaluation games are parity
games. These are games of possibly infinite duration where each position is
assigned a natural number, called its priority, and the winner of an infinite
play is determined according to whether the least priority seen infinitely
often during the play is even or odd. It is open whether winning sets and
winning strategies for parity games can be computed in polynomial time.
The best algorithms known today are polynomial in the size of the game, but
exponential with respect to the number of priorities. Practically competitive
model-checking algorithms for the modal μ-calculus work by solving the
strategy problem for the associated parity game (see e.g. [73]).

Definition 3.3.23. We describe a parity game by a labelled graph
G = (V, V0, V1, E,Ω), where (V, V0, V1, E) is a game graph as in Section 3.1.2,
and Ω : V → N assigns to each position a priority. The set V of positions
may be finite or infinite, but the number of different priorities must be finite; it
is called the index of G. Recall that a finite play of a game is lost by the player
who gets stuck, i.e. cannot move. The difference to the games of Section 3.1.2
is that we have different winning conditions for infinite plays v0v1v2 . . . . If the
smallest number appearing infinitely often in the sequence Ω(v0)Ω(v1) . . . of
priorities is even, then Player 0 wins the play; otherwise, Player 1 wins.

Recall that a positional strategy of Player σ is a partial function
f : Vσ → V with (v, f(v)) ∈ E. A strategy f is said to be winning on a
set of positions W ⊆ V if any play that starts at a position in W and is
consistent with f is winning for Player σ. Further, Wσ , the winning region
of Player σ, is the set of positions from which Player σ has a winning strategy
(which, a priori, need not be positional).

Exercise 3.3.24 (Combination of positional strategies). Let f and f ′

be positional strategies for Player σ that are winning on the sets W and W ′,
respectively. Let f � f ′ be the positional strategy defined by

(f � f ′)(x) :=

{
f(x) if x ∈W

f ′(x) otherwise.

Prove that f � f ′ is winning on W ∪W ′.

The Positional Determinacy Theorem for parity games states that parity
games are always determined (i.e., from each position, one of the players has
a winning strategy) and in fact, positional strategies always suffice. This was
proved independently by Emerson and Jutla [40] and by Mostowski [86]. Ear-
lier, Gurevich and Harrington [62] had proved that Muller games (which are
more general than parity games) are determined via finite-memory strategies.
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Theorem 3.3.25 (Positional Determinacy). In any parity game, the set
of positions can be partitioned into two sets W0 and W1 such that Player 0
has a positional strategy that is winning on W0 and Player 1 has a positional
strategy that is winning on W1.

Here, we only prove this theorem for the case of finite game graphs.
The presentation is inspired by a similar proof due to Ehrenfeucht and
Mycielski [39] for mean payoff games; see also [12]. For the general case, we
refer the reader to [102] or [97].

Proof. Let G = (V, V0, V1, E,Ω) be a parity game with a finite set V of
positions. We call a position v ∈ V live if it is non-terminal (i.e. if there is at
least one possible move from v). The theorem trivially holds for games with
at most one live position. We now proceed by induction over the number of
live positions.

For every live position v in G and for σ = 0, 1, we define the game G[v, σ],
which is the same as G except that we change v to a terminal position
where Player σ wins. (Technically this means that we put v into V1−σ and
delete all outgoing edges from v.) By the induction hypothesis, the Forgetful
Determinacy Theorem holds for G[v, σ], and we write W0[v, σ] and W1[v, σ]
for the winning regions of G[v, σ].

It suffices to show that for every live position u in G, one of the players has
a positional strategy to win G from u. By Exercise 3.3.24, these strategies can
then be combined into positional strategies that win on the entire winning
regions.

Clearly,
W0[v, 1] ⊆W0 and W1[v, 0] ⊆W1.

Moreover, any positional strategy f for Player σ that is winning from position
u in the game G[v, 1−σ] is also winning from u in the game G and avoids v (i.e.
no play that starts at u and is consistent with f ever hits position v). Now let

Aσ :=
⋃

v live

Wσ[v, 1− σ].

We call positions u ∈ Aσ strong winning positions for Player σ because,
informally speaking, Player σ can win G from u even if she gives away some
live positions to her opponent. Similarly, positions outside A0 ∪A1 are called
weak positions. It remains to show that from weak positions also, one of the
players has a positional winning strategy. In fact, one of the players wins,
with a positional winning strategy, from all weak positions.

By the induction hypothesis, if u is not in A1−σ, then, for all live positions
v of G, we have that u ∈ Wσ [v, σ] and, moreover, Player σ has a positional
strategy fv by which, starting at any position u �∈ A1−σ, she either wins or
eventually reaches v.

We distinguish two cases, depending on whether or not there exist strong
winning positions that are live (terminal positions are, of course, always
strong).
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Case (i). Suppose that there exists a live position v ∈ Aσ. In this case,
Player σ also wins from every weak position u.

We already know that Player σ has a positional strategy f to win G from
v, and a positional strategy fv by which she either wins G or reaches v from
u. We can easily combine f and fv into a positional winning strategy f∗ to
win G from u: we set f∗(x) := f(x) if f is winning from x, and f∗(x) := fv(x)
otherwise.

Case (ii). Suppose now that all live positions are weak. We claim that in
this case, Player 0 wins from all live (i.e. all weak) positions if the minimal
priority on G is even, and Player 1 wins from all live positions if the minimal
priority is odd.

Since all live positions are weak, we already know that Player σ has, for
every live position y, a positional strategy fy by which she either wins or
reaches y from any live position in G.

Take now a live position v of minimal priority, and put σ = 0 if Ω(v) is
even, and σ = 1 if Ω(v) is odd. In addition, pick any live position w �= v. We
combine the positional winning strategies fv and fw into a new positional
strategy f with

f(x) :=

{
fw(x) if x = v

fv(x) otherwise.

We claim that f is a winning strategy for Player σ from all live positions
of G. If a play in G in which Player 0 moves according to f hits v only finitely
often, then this play eventually coincides with a play consistent with fv,
and is therefore won by Player σ. But if the play hits v infinitely often, the
minimal priority seen infinitely often is Ω(v), and hence Player σ wins also
in this case. �

Exercise 3.3.26 Let G be a parity game with winning sets W0 and W1.
Obviously every positional winning strategy for Player 0 has to remain inside
W0, i.e. f(V0∩W0) ⊆W0. However, remaining inside the winning region does
not suffice for winning a game! Construct a parity game and a positional
strategy f for Player 0 such that all plays consistent with f remain insiside
W0, yet are won by Player 1. Hint: a trivial game with two positions suffices.

Exercise 3.3.27 A future game is any game on a game graph
G = (V, V0, V1, E) where the winning condition does not depend on finite
prefixes of plays. This means that whenever π = v0v1 · · · and π′ = v′0v′1 · · · are
two infinite plays of G such that for some n and m vmvm+1 · · · = v′nv

′
n+1 · · · ,

then π and π′ are won by the same player. Obviously parity games are a
special case of future games.

Prove that for every future game G, the winning region of Player 0 is a
fixed point (not necessarily the least one) of the operator Fψ, defined by the
formula ψ(X) := (V0 ∧�X)∨ (V1 ∧�X). Since Fψ is monotone, the least and
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greatest fixed points exist, and lfp(Fψ) ⊆ W0 ⊆ gfp(Fψ). Find conditions
(on parity games) implying that W0 = lfp(Fψ) or that W0 = gfp(Fψ).

Theorem 3.3.28. It can be decided in NP∩Co-NP whether a given position
in a parity game is a winning position for Player 0.

Proof. A node v in a parity game G = (V, V0, V1, E,Ω) is a winning position
for Player σ if there exists a positional strategy f : Vσ → V which is winning
from position v. It therefore suffices to show that the question of whether
a given f : Vσ → V is a winning strategy for Player σ from position v can
be decided in polynomial time. We prove this for Player 0; the argument for
Player 1 is analogous.

Given G and f : V0 → V we obtain a reduced game graph Gf = (V,Ef )
by keeping only the moves that are consistent with f , i.e.

Ef = {(v, w) : (v ∈ Vσ ∧ w = f(v)) ∨ (v ∈ V1−σ ∧ (v, w) ∈ E}.

In this reduced game, only the opponent, Player 1, makes non-trivial moves.
We call a cycle in (V,Ef ) odd if the smalest priority of its nodes is odd.
Clearly, Player 0 wins G from position v via strategy f if, and only if, in Gf ,
no odd cycle and no terminal position w ∈ V0 are reachable from v. Since the
reachability problem is solvable in polynomial time, the claim follows. �

In fact, Jurdziński [72] proved that the problem is in UP ∩ Co-UP, where
UP denotes the class of NP-problems with unique witnesses. The best known
deterministic algorithms to compute winning partitions of parity games have
running times that are polynomial with respect to the size of the game graph,
but exponential with respect to the index of the game [73].

Theorem 3.3.29. The winning partition of a parity game G =
(V, V0, V1, E,Ω) of index d can be computed in space O(d · |E|) and time

O

(

d · |E| ·
(
|V |
'd/2(

)d/2�)
.

The Unfolding of a Parity Game

Let G = (V, V0, V1, E,Ω) be a parity game. We assume that the minimal prior-
ity in the range of Ω is even, and that every node v with minimal priority has
a unique successor s(v) (i.e. vE = {s(v)}). This is no loss of generality. We can
always tranform a parity game in such a way that all nodes with non-maximal
priority have unique successors (i.e. choices are made only at the least relevant
nodes). If the smallest priority in the game is odd, we consider instead the dual
game (with the roles of the players switched and priorities decreased by one).

Let T be the set of nodes with minimal priority and let G− be the game
obtained by deleting from G all edges (v, s(v)) ∈ T × V so that the nodes in
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T become terminal positions. We define the unfolding of G as a sequence of
games Gα (where α ranges over the ordinals) which all coincide with G− up
to the winning conditions for the terminal positions v ∈ T . For every α, we
define a decomposition T = Tα0 ∪ Tα1 , where Tασ is the set of v ∈ T in which
we declare, for the game Gα, Player σ to be the winner. Further, for every
α, we write Wα

σ for the winning set of Player σ in the game Gα. Note that
Wα
σ depends of course on the decomposition T = Tα0 ∪ Tα1 (this also applies

concerning positions outside T ). In turn, the decomposition of T for α + 1
depends on the winning sets Wα

σ in Gα. We set

T 0
0 := T

Tα+1
0 := {v ∈ T : s(v) ∈ Wα

0 }

T λ0 :=
⋂

α<λ

Tα0 for limit ordinals λ.

By determinacy, V = Wα
0 ∪ Wα

1 for all α, and with increasing α, the
winning sets of Player 0 are decreasing and the winning sets of Player 1 are
increasing:

W 0
0 ⊇W 1

0 ⊇ · · ·Wα
0 ⊇Wα+1

0 ⊇ · · ·
W 0

1 ⊆W 1
1 ⊆ · · ·Wα

1 ⊆Wα+1
1 ⊆ · · · .

Hence there exists an ordinal α (whose cardinality is bounded by the
cardinality of V ) for which Wα

0 = Wα+1
0 =: W∞

0 and Wα
1 = Wα+1

1 =: W∞
1 .

We claim that these fixed points coincide with the winning sets W0 and W1

for the original game G.

Lemma 3.3.30 (Unfolding Lemma). W0 = W∞
0 and W1 = W∞

1 .

Proof. It suffices to define a strategy f for Player 0 and a strategy g for Player
1 for the game G, by means of which Player σ wins from all positions v ∈W∞

σ .
First, we fix a winning strategy fα for Player 0 in Gα, with winning set

Wα
0 = W∞

0 . Note that fα can be trivially extended to a strategy f for the
game G, since the nodes in T have unique successors in G. We claim that f
is in fact a winning strategy in G from all positions v ∈Wα

0 .
To see this, consider any play v0v1v2 . . . in G from position v0 ∈ Wα

0

against f . Such a play can never leave Wα
0 . If vi ∈ Wα

0 \ T , then vi+1 ∈ Wα
0

because f is a winning strategy for Gα; and if vi ∈ Wα
0 ∩T = Wα+1

0 ∩T , then
vi ∈ Tα+1

0 , which implies, by the definition of Tα+1
0 , that vi+1 = s(vi) ∈Wα

0 .
But a play that never leaves Wα

0 is necessarily won by Player 0: either it goes
only finitely often through positions in T , and then coincides from a certain
point onwards with a winning play in Gα, or it goes infinitely often through
positions in T , in which case Player 0 wins because the minimal priority that
is hit infinitely often is even.
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To construct a winning strategy for Player 1 in the game G, we define,
for every node v ∈ W∞

1 , the ordinal

ρ(v) := min{β : v ∈W β
1 }.

We fix, for every ordinal α, a winning strategy gα for Player 1 with winning
set Wα

1 in the game Gα, and set

g(v) := gσ(v)(v) for all v ∈ V1 \ T

and g(v) := s(v) for v ∈ V1 ∩ T .
Consider any play v0v1v2 . . . in G from position v0 ∈ W∞

1 against g. We
claim that whenever vi ∈W∞

1 , then

(1) vi+1 ∈ W∞
1 ,

(2) ρ(vi+1) ≤ ρ(vi), and
(3) if vi ∈ T , then ρ(vi+1) < ρ(vi).

If vi ∈ W∞
1 \ T and ρ(vi) = α, then vi ∈ Wα

1 , and therefore (since Player 1
moves locally according to his winning strategy gα and Player 0 cannot leave
winning sets of her opponent) vi+1 ∈ Wα

1 . But if vi ∈W∞
1 ∩T and ρ(vi) = α,

then vi ∈ Tα1 , α = β + 1 is a successor ordinal, and vi+1 = s(vi) ∈ W β
1 (by

the definition of Tα1 ). Hence ρ(vi+1) ≤ β < ρ(vi).
Properties (1), (2), and (3) imply that the play stays inside W∞

1 and that
the values ρ(v) are decreasing. Since there are no infinite strictly descending
chains of ordinals, the play eventually remains inside Wα

1 , for a fixed α, and
outside T (since moves from T would reduce the value of σ(v)). Hence the
play eventually coincides with a play in Gα in which Player 1 plays according
to his winning strategy gα. Thus, Player 1 wins. �

3.3.5 Model-Checking Games for Least Fixed-Point Logic

For the purpose of defining evaluation games for LFP-formulae and analysing
the complexity of model checking, it is convenient to make the following
assumptions. First, the fixed-point formulae should not contain parameters
(the reason for this will be discussed below). Second, the formula should be in
negation normal form, i.e. negations apply to atoms only, and third, it should
be well-named, i.e. every fixed-point variable is bound only once and the free
second-order variables are distinct from the fixed-point variables. We write
Dψ(T ) for the unique subformula in ψ of the form [fpTx . ϕ(T, x)] (where fp
means either lfp or gfp). For technical reasons, we assume, finally, that each
fixed-point variable T occurs in Dψ(T ) only inside the scope of a quantifier.
This is a common assumption that does not affect the expressive power. We
say that T ′ depends on T if T occurs free in Dψ(T ′). The transitive closure
of this dependency relation is called the dependency order, denoted by
�ψ. The alternation level alψ(T ) of T in ψ is the maximal number of
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alternations between least and greatest fixed-point variables on the �ψ-paths
from T . The alternation depth ad(ψ) of a fixed-point formula ψ is the
maximal alternation level of its fixed point variables.

Consider now a finite structure A and an LFP-formula ψ(x), which we
assume to be well-named, in negation normal form, and without parameters.
The model-checking game G(A, ψ(a)) is a parity game. As in the case of first-
order logic, the positions of the game are expressions ϕ(b), i.e. subformulae
of ψ that are instantiated by elements of A. The initial position is ψ(a). The
moves are as in the first-order game, except for the positions associated with
fixed-point formulae and with fixed-point atoms. At such positions there is
a unique move (by Falsifier, say) to the formula defining the fixed point. For
a more formal definition, recall that as ψ is well-named, there is, for any
fixed-point variable T in ψ, a unique subformula [fp Tx . ϕ(T, x)](y). From
position [fpTx . ϕ(T, x)](b), Falsifier moves to ϕ(T, b), and from any fixed
point atom Tc, she moves to the position ϕ(T, c).

Hence the case where we do not have fixed points the game is the usual
model-checking game for first-order logic. Next, we consider the case of a
formula with only one fixed-point operator, which is an lfp. The intuition is
that from position [lfp Tx . ϕ(T, x)](b), Verifier tries to establish that b enters
T at some stage α of the fixed-point induction that is defined by ϕ on A. The
game goes to ϕ(T, b) and from there, as ϕ is a first-order formula, Verifier can
either win the ϕ-game in a finite number of steps, or force it to a position Tc,
where c enters the fixed point at some stage β < α. The game then resumes
at position ϕ(c), associated again with ϕ. As any descending sequence of
ordinals is finite, Verifier will win the game in a finite number of steps. If the
formula is not true, then Falsifier can either win in a finite number of steps or
force the play to go through infinitely many positions of the form Tc. Hence,
these positions should be assigned priority 1 (and all other positions higher
priorities) so that such a play will be won by Falsifier. For gfp-formulae, the
situation is reversed. Verifier wants to force an infinite play, going infinitely
often through positions Tc, so gfp-atoms are assigned priority 0.

In the general case, we have a formula ψ with nested least and greatest
fixed points, and in an infinite play of G(A, ψ(a)) one may see different fixed
point variables infinitely often. But one of these variables is then the smallest
with respect to the dependency order �ψ. It can be shown that A |= ψ iff
this smallest variable is a gfp-variable (provided the players play optimally).

Hence, the priority labelling should assign even priorities to gfp-atoms
and odd priorities to lfp-atoms. Further, if T �ψ T ′ and T, T ′ are fixed-point
variables of different kinds, then T -atoms should get a lower priority than
T ′-atoms.

As the index of a parity game is the main source of difficulty in computing
winning sets, the number of different priorities should be kept as small as pos-
sible. We can avoid the factor of 2 appearing in common constructions of this
kind by adjusting the definitions of the alternation level and alternation depth,
setting al∗ψ(T ) := alψ(T ) + 1 if alψ(T ) is even or odd and T is an lfp-variable
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or a gfp-variable, respectively. In all other cases, al∗ψ(T ) = alψ(T ). Finally, let
ad∗(ψ) be the maximal value of ad∗ψ(T ) for the fixed-point variables in ψ. The
priority labelling Ω on positions of G(A, ψ) is then defined by Ω(Tb) = al∗ψ(T )
for fixed-point atoms, and Ω(ϕ(b)) = ad∗(ψ) for all other formulae.

This completes the definition of the game G(A, ψ(a)). Note that the
priority labelling has the properties described above, and that the index of
G(A, ψ(a)) is at most ad(ψ) + 1.

Theorem 3.3.31. Let ψ(x) be a well-named and parameter-free LFP-formula
in negation normal form, and let A be a relational structure. A |= ψ(a) if and
only if Player 0 has a winning strategy for the parity game G(A, ψ(a)).

Proof. This is proved by induction on ψ. The interesting case concerns
fixed-point formulae ψ(x) := [gfpTx . ϕ(x)](x).

In the game G(A, ψ(a)), the positions of minimal priority are the
fixed-point atoms Tb, which have unique successors ϕ(b). By the induction
hypothesis we know that, for every interpretation T0 of T , (A, T0) |= ϕ(a)
iff Player 0 has a winning strategy for G((A, T0), ϕ(a)). By the unfold-
ing of greatest fixed points, we also know that A |= [gfpTx . ϕ(x)](a) if
(A, Tα) |= ϕ(a) for all approximations Tα.

By ordinal induction, one can immediately see that the games
G((A, Tα), ϕ(a)) coincide with the unfolding of the game G = G(A, ψ(a)) to
the games Gα. By the Unfolding Lemma, we conclude that Player 0 wins the
game G(A, ψ(a)) if, and only if, she wins all games Gα which is the case if,
and only if, (A, Tα) |= ϕ(a) for all α, which is equivalent to A |= ψ(a).

For least fixed-point formulae we proceed by dualization. �

Clearly, the size of the game G(A, ψ(a)) (and the time complexity of its
construction) is bounded by |cl(ψ)| · |A|width(ψ). Hence, for LFP-formulae of
bounded width, the size of the game is polynomially bounded.

Corollary 3.3.32. The model-checking problem for LFP-formulae of bounded
width (and without parameters) is in NP ∩ Co-NP, in fact in UP ∩ Co-UP.

As formulae of the μ-calculus can be viewed as LFP-formulae of width 2,
the same bound applies to Lμ. (For a different approach to this problem, which
does not mention games explicitly, see [100].) It is a well-known open problem
whether the model-checking problem for Lμ can be solved in polynomial time.

Exercise 3.3.33 Prove that if the model-checking problem for Lμ can
be solved in polynomial time, then the same is true for (parameter-
free) LFP-formulae of width k, for any fixed k ∈ N. Hint: given
a finite structure A = (A,R1, . . . , Rm), with relations of Ri of ari-
ties ri ≤ k, let Gk(A) be the transition system with universe
Ak, unary relations R∗

i = {(a1, . . . , ak) : (a1, . . . , ari) ∈ Ri} and
Iij = {(a1, . . . , ak) : ai = aj}, and binary relations Ej = {(a, b) : ai = bi
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for i �= j} (for j = 1, . . . , k) and Eσ = {(a, b) : bi = aσ(i) for i = 1, . . . , k} for
each substitution σ : {1, . . . , k} → {1, . . . , k}. Translate formulae ψ ∈ LFP
of width k into formulae ψ∗ ∈ Lμ such that A |= ψ(a) iff Gk(A), a |= ψ∗.
(See [55, pp. 110–111] for details.)

By Theorem 3.3.29, we obtain the following deterministic complexity
bounds for LFP model checking.

Theorem 3.3.34. Given a finite structure A and a formula ψ(a) of width
k and alternation depth d, it can be decided whether A |= ψ(a) in space
O(d · |cl(ψ)| · |A|k) and time

O

(

d2 ·
(
|cl(ψ)| · |A|k
'(d + 1)/2(

)(d+3)/2�)
.

Corollary 3.3.35. The model-checking problem for LFP-formulae of bounded
width and bounded alternation depth is solvable in polynomial time.

Fixed-Point Formulae with Parameters

We have imposed the condition that the fixed-point formulae do not contain
parameters. If parameters are allowed, then, at least with a naive definition
of width, Corollary 3.3.32 is no longer true (unless UP = PSPACE). The
intuitive reason is that parameters allow us to ‘hide’ first-order variables in
fixed-point variables. Indeed, Dziembowski [37] proved that QBF, the evalu-
ation problem for quantified Boolean formulae, can be reduced to evaluating
LFP-formulae with two first-order variables (but an unbounded number of
monadic fixed-point variables) on a fixed structure with three elements. Hence
the expression complexity of evaluating such formulae is PSPACE-complete.
A similar argument works for the case where also the number of fixed-point
variables is bounded, but the structure is not fixed (combined complexity
rather than expression complexity). We remark that the collection of all
unwindings in infinitary logic of LFP-formulae with k variables, including
parameters, is not contained in any bounded width fragment of infinitary logic.

LFP-Formulae of Unbounded Width

For LFP-formulae of unbounded width, Theorem 3.3.34 gives only an
exponential time bound. In fact, this cannot be improved, even for very
simple LFP-formulae [99].

Theorem 3.3.36 (Vardi). The model-checking problem for LFP-formulae
(of unbounded width) is EXPTIME-complete, even for formulae with only
one fixed-point operator, and on a fixed structure with only two elements.

We defer the hardness proof to Section 3.3.10, where we shall show that
the expression complexity is EXPTIME-hard even for Datalog, which is a
more restricted formalism than LFP.



3.3 Fixed-Point Logics 169

3.3.6 Definability of Winning Regions in Parity Games

We have seen that the model-checking problem for the μ-calculus or LFP
can be reduced to the problem of computing winning regions in parity
games. In fact, there is also a reduction in the reverse direction. We can
represent any parity game G = (V, V0, V1, E,Ω) with a priority function
Ω : V → {0, . . . d − 1} by a transition system (V,E, V0, V1, P0, . . . , Pd−1),
where Pi = {V : Ω(v) = i}. We can then construct, for every fixed d ∈ N, a
formula Wind of the μ-calculus that defines the winning region of Player 0 in
any parity game with priorities 0, . . . , d− 1. We set

Wind = νX0μX1νX2 . . . λXd−1

d−1∨

j=0

(
(V0 ∧ Pj ∧�Xj) ∨ (V1 ∧ Pj ∧ �Xj)

)
.

In this formula, the fixed-point operators alternate between ν and μ, and
hence λ = ν if d is odd, and λ = μ if d is even.

Theorem 3.3.37. For every d ∈ N, the formula Wind defines the winning
region of Player 0 in parity games with priorities 0, . . . , d− 1.

Proof. We have to show that, for any parity game G = (V, V0, V1, P0, . . . , Pd−1)
and every position v ∈ V ,

G, v |= Wind ⇐⇒ Player 0 has a winning strategy for G from v.

To see this, let G∗ be the model-checking game for the formula Wind on
G, v and identify Verifier with Player 0 and Falsifier with Player 1. Hence,
Player 0 has a winning strategy for G∗ if, and only if, G, v |= Wind.

By the construction of model-checking games, G∗ has positions of the form
(ϕ, u), where u ∈ V and ϕ is a subformula of Wind. The priority of a position
(Xi, u) is i, and when ϕ is not a fixed point variable, the priority of (ϕ, u) is d.

We claim that the game G∗ is essentially, i.e. up to elimination of stupid
moves and contraction of several moves into one, the same as the the original
game G. To see this, we compare playing G from a current position u ∈ V0∪Pi
with playing G∗ from any position (ϕk, u), where ϕk is the subformula of
Wind that starts with νXk or μXk.

In G, Player 0 selects at position u a successor w ∈ uE, and the play
proceeds from w. In G∗, the play goes from (ϕk, u) through positions
(ϕk+1, u) . . . , (ϕd−1, u) to (ϑ, u), where

ϑ =
d−1∨

j=0

(
(V0 ∧ Pj ∧�Xj) ∨ (V1 ∧ Pj ∧ �Xj)

)
.

The only reasonable choice for Verifier (Player 0) at this point is to move to
the position (V0∧Pi∧�Xi, u), since with any other move she would lose imme-
diately. But from there, the only reasonable move of Falsifier (Player 1) is to
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go to position (�Xi, u), and it is now the turn of Player 0 to select a successor
w ∈ vE and move to position (Xi, w) from which the play proceeds to (ϕi, w).

Thus one move from u to w in G corresponds to a sequence of moves
in G∗ from (ϕk, u) to (ϕi, w), but the only genuine choice is the move from
(�Xi, u) to (Xi, w), i.e. the choice of a successor w ∈ uE. In G, the position
u has priority i, and in G∗ the minimal, and hence relevant, priority that is
seen in the sequence of moves from (ϕk, u) to (ϕi, w) is that of (Xi, u) which
is also i. The situation for positions u ∈ V1 ∩ Pi is the same, except that
the play in G∗ now goes through (�Xi, u) and it is Player 1 who selects a
successor w ∈ uE and moves to (Xi, w).

Hence the (reasonable) choices that have to be made by the players in G∗

and the relevant priorities that are seen are the same as in a corresponding
play of G. Thus, Player 0 has a winning strategy for G from v if, and only if,
Player 0 has a winning strategy for G∗ from position (ϕ0, v). But since G∗ is
the model-checking game for Wind on G, with initial position (ϕ0, v), this is
the case if, and only if, G, v |= Wind. �

Corollary 3.3.38. The following three problems are algorithmically equiva-
lent, in the sense that if one of them admits a polynomial-time algorithm,
then all of them do.

(1) Computing winning regions in parity games.
(2) The model-checking problem for LFP-formulae of width at most k, for

any k ≥ 2.
(3) The model-checking problem for the modal μ-calculus.

The formulae Wind also play an important role in the study of the
alternation hierarchy of the modal μ-calculus. Clearly, Wind has alternation
depth d and it has been shown that there is no formula in the μ-calculus
with alternation depth < d can be equivalent to Wind. Hence the alternation
hierarchy of the μ-calculus is strict [4, 20].

3.3.7 Simultaneous Fixed-Point Inductions

A more general variant of LFP permits simultaneous inductions over several
formulae. A simultaneous induction is based on on a system of operators of
the form

F1 : P(B1)× · · · × P(Bm) −→ P(B1)
...

Fm : P(B1)× · · · × P(Bm) −→ P(Bm),

forming together an operator

F = (F1, . . . , Fm) : P(B1)× · · · × P(Bm) −→ P(B1)× · · · × P(Bm).
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Inclusion on the product lattice P(B1) × · · · × P(Bm) is componentwise.
Accordingly, F is monotone if, whenever Xi ⊆ Yi for all i, then also
Fi(X) ⊆ Fi(Y ) for all i.

Everything said above about least and greatest fixed points carries over
to simultaneous induction. In particular, a monotone operator F has a
least fixed point lfp(F ) which can be constructed inductively, starting with
X

0
= (∅, . . . , ∅) and iterating F until a fixed point X

∞
is reached.

One can extend the logic LFP by a simultaneous fixed point formation rule.

Definition 3.3.39. Simultaneous least fixed-point logic, denoted by
S-LFP, is the extension of first-order logic by the following rule.

Syntax. Let ψ1(R, x1), . . . , ψm(R, xm) be formulae of vocabulary
τ ∪ {R1, . . . , Rm}, with only positive occurrences of R1, . . . , Rm, and, for
each i ≤ m, let xi be a sequence of variables matching the arity of Ri. Then

S :=

⎧
⎪⎨

⎪⎩

R1x1 := ψ1

...
Rmxm := ψm

is a system of update rules, which is used to build formulae [lfp Ri : S](t) and
[gfp Ri : S](t) (for any tuple t of terms whose length matches the arity of Ri).

Semantics. On each structure A, S defines a monotone operator
SA = (S1, . . . , Sm) mapping tuples R = (R1, . . . , Rm) of relations on A to
SA(R) = (S1(R), . . . , Sm(R)) where Si(R) := {a : (A, R) |= ψi(R, a)}. As the
operator is monotone, it has a least fixed point lfp(SA) = (R∞

1 , . . . , R∞
m ).

Now A |= [lfpRi : S](a) if a ∈ R∞
i . Similarly for greatest fixed points.

Example 3.3.40. We return to the circuit value problem for circuits with
fan-in 2 and NAND gates (see Example 3.2.14). Simultaneous LFP-definitions
of the nodes evaluating to true and false in the given circuit (V,E, I+, I−)
are given by the formulae [lfpT : S](z) and [lfpF : S](z), respectively, where
S is the system

Tz := I+z ∨ ∃x(Exz ∧ Fx)

Fz := I−z ∨ ∃x∃y(Exz ∧ Eyx ∧ x �= y ∧ Tx ∧ Ty).

Elimination of Simultaneous Fixed-Points

The question arises of whether simultaneous fixed points provide more
expressive power than simple ones. We shall prove that this is not the case.
Simultaneous least fixed points can be simulated by nested simple ones, via a
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technique that is sometimes called the Bekic principle [5]. We shall consider
only the case of two monotone operators

F : P(A)× P(B) → P(A)
G : P(A)× P(B) → P(B).

We write (F∞, G∞) for the least fixed point of the combined operator (F,G).
For any fixed X ⊆ A, the operator GX : P(B) → P(B) with GX(Y ) :=
G(X,Y ) is also monotone, and therefore has a least fixed point lfp(GX) ⊆ B.

Lemma 3.3.41. The operator E on P(A), defined by E(X) :=
F (X, lfp(GX)), is monotone and has the least fixed point lfp(E) = F∞.

Proof. If X ⊆ X ′, then a trivial induction shows that GαX ⊆ GαX′ for all
stages GαX and GαX′ of the induced operators GX and GX′ . As a consequence,
lfp(GX) ⊆ lfp(GX′) and E(X) = F (X, lfp(GX)) ⊆ F (X ′, lfp(GX′)) =
E(X ′). This shows that E is monotone.

Note that lfp(GF∞) ⊆ G∞, because GF∞(G∞) = G(F∞, G∞) = G∞.
Hence G∞ is a fixed point of GF∞ and therefore contains the least fixed
point lfp(GF∞). Further,

E(F∞) = F (F∞, lfp(GF∞)) ⊆ F (F∞, G∞) = F∞.

As lfp(E) =
⋂
{X : E(X) ⊆ X} it follows that lfp(E) ⊆ F∞.

It remains to show that F∞ ⊆ lfp(E). We proceed by induction, showing
that the stages (Fα, Gα) of the operator (F,G) and the stages Eα of E satisfy

(Fα, Gα) ⊆ (lfp(E), lfp(Glfp(E)).

For α = 0, this is clear. Further,

Fα+1 = F (Fα, Gα) ⊆ F (lfp(E), lfp(Glfp(E))) = E(lfp(E) = lfp(E)

Gα+1 = G(Fα, Gα) ⊆ G(lfp(E), lfp(Glfp(E))) = Glfp(E)(lfp(Glfp(E))
= lfp(Glfp(E)).

Finally, for limit ordinals the induction argument is trivial. �

We are now ready to show that for any system

S :=

⎧
⎪⎨

⎪⎩

R1x1 := ψ1

...
Rmxm := ψm

the formulae [lfp Ri : S](x) are equivalent to simple LFP formulae. Further,
the translation does not increase the number and arity of the fixed-point
variables R1, . . . , Rm, nor the alternation depth (i.e. the changes between
least and greatest fixed points). It therefore remains valid for interesting
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fragments of LFP, such as monadic LFP and alternation-free LFP, and also
for the modal μ-calculus (see [5]). It does, however, increase the nesting depth
of fixed-point operators. (We remark that there are alternative elimination
techniques that do not increase the nesting depth, but instead augment the
arity of the fixed-point operators.)

Theorem 3.3.42. S-LFP ≡ LFP.

Proof. Obviously LFP is contained in S-LFP. For the converse, we restrict
our attention to simultaneous inductions over two formulae. The general case
is treated by analogous arguments.

Given a system

S :=
{
Rx := ψ(R, T )
Ty := ϕ(R, T )

we claim that

[lfp R : S](u) ≡ [lfpRx . ψ(R, [lfpTy . ϕ])](u)
[lfp T : S](v) ≡ [lfpTy . ϕ([lfpRx . ψ], T )](v).

We shall prove the first equivalence. We fix a structure A and consider
the operator SA = (F,G) with F : (R, T ) �→ {a : A |= ψ(R, T, a)} and
G : (R, T ) �→ {a : A |= ϕ(R, T, a)}. Writing (F∞, G∞) for the least fixed
point of (F,G) we have that A |= [lfp R : S](a) iff a ∈ F∞.

The formula ψ(R, [lfpTy . ϕ]) defines on A the operator
E : R �→ F (R, lfp(GR)) with GR : T �→ G(R, T ), and we have that
A |= [lfpRx . ψ(R, [lfpTy . ϕ])](a) iff a ∈ lfp(E). But, by the previous
lemma, F∞ = lfp(E). �

While we have shown that simultaneous fixed points do not provide more
expressive power, they permit us to write formulae in a more modular and
more readable form.

Positive LFP

While LFP and the modal μ-calculus allow arbitrary nesting of least and
greatest fixed points, and arbitrary interleaving of fixed points with Boolean
operations and quantifiers, classical studies of inductive definability over first-
order logic (such as [85]) focus on a more restricted logic. Let LFP1 (sometimes
also called positive LFP) be the extension of first-order logic that is obtained
by taking least fixed points of positive first-order formulae (without param-
eters) and closing them under disjunction, conjunction, and existential and
universal quantification, but not under negation (for a more formal definition,
see the Chap. 2. LFP1 can be conveniently characterized in terms of simul-
taneous least fixed points. We just state the result; for a proof see Chap. 2
again.
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Theorem 3.3.43. A query is definable in LFP1 if and only if it is definable
by a formula of the form [lfpR : S](x), where S is a system of update rules
Rix := ϕi(R, x) with first-order formulae ϕi. Moreover, we can require,
without diminishing the expressive power, that each of the formulae ϕi in the
system is either a purely existential formula or a purely universal formula.

3.3.8 Inflationary Fixed-Point Logic

LFP is only one instance of a logic with an explicit operator for forming
fixed points. A number of other fixed-point extensions of first-order logic (or
fragments of it) have been extensively studied in finite model theory. These
include inflationary, partial, non-deterministic, and alternating fixed point
logics. All of these have in common that they allow the construction of fixed
points of operators that are not necessarily monotone.

An operator G : P(B) → P(B) is called inflationary if G(X) ⊇ X for
all X ⊆ B. With any operator F one can associate an inflationary operator
G, defined by G(X) := X ∪ F (X). In particular, inflationary operators are
inductive, so iterating G yields a fixed point, called the inflationary fixed
point of F .

Exercise 3.3.44 Prove the following facts. (1) Monotone operators need not
be inflationary, and inflationary operators need not be monotone. (2) An
inflationary operator need not have a least fixed point. (3) The least fixed
point of an inflationary operator (if it exists) may be different from the
inductive fixed point. (4) However, if F is a monotone operator, then its
inflationary fixed point and its least fixed point coincide.

The logic IFP is defined with a syntax similar to that of LFP, but without
the requirement that the fixed-point variable occurs only positively in the
formula, and with a semantics given by the associated inflationary operator.

Definition 3.3.45. IFP is the extension of first-order logic by the following
fixed-point formation rule. For every formula ψ(R, x), every tuple x of
variables, and every tuple t of terms (such that the lengths of x and t match
the arity of R), we can build a formula [ifpRx . ψ](t).

Semantics. On a given structure A, we have that A |= [ifpRx . ψ](t) if t
A

is contained in the union of the stages Rα of the inflationary operator Gψ
defined by Gψ(R) := R ∪ Fψ(R).

By the last item of Exercise 3.3.44, least and inflationary inductions are
equivalent for positive formulae, and hence IFP is at least as expressive as
LFP. On finite structures, inflationary inductions reach the fixed point after
a polynomial number of iterations, hence every IFP-definable class of finite
structures is decidable in polynomial time.

Proposition 3.3.46. IFP captures PTIME on ordered finite structures.
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Least Versus Inflationary Fixed-Points

As both logics capture PTIME, IFP and LFP are equivalent on ordered finite
structures. What about unordered structures? It was shown by Gurevich and
Shelah [63] that the equivalence of IFP and LFP holds on all finite structures.
Their proof does not work on infinite structures, and indeed there are some
important aspects in which least and inflationary inductions behave differ-
ently. For instance, there are first-order operators (on arithmetic, say) whose
inflationary fixed point is not definable as the least fixed point of a first-order
operator. Further, the alternation hierarchy in LFP is strict, whereas IFP has
a positive normal form (see Exercise 3.3.52 below). Hence it was conjectured
by many that IFP might be more powerful than LFP. However, Kreutzer [80]
showed recently that IFP is equivalent to LFP on arbitrary structures. Both
proofs, by Gurevich and Shelah and by Kreutzer, rely on constructions
showing that the stage comparison relations of inflationary inductions are
definable by lfp inductions.

Definition 3.3.47. For every inductive operator F : P(B) → P(B), with
stages Xα and an inductive fixed point X∞, the F -rank of an element b ∈ B
is |b|F := min{α : b ∈ Xα} if b ∈ X∞, and |b|F = ∞ otherwise. The stage
comparison relations of G are defined by

a ≤F b iff |a|F ≤ |b|F <∞
a ≺F b iff |a|F < |b|F .

Given a formula ϕ(R, x), we write ≤ϕ and ≺ϕ for the stage comparison
relations defined by the operator Fϕ (assuming that it is indeed inductive),
and ≤inf

ϕ and ≺inf
ϕ for the stage comparison relations of the associated

inflationary operator Gϕ : R �→ R ∪ {a : A |= ϕ(R, a)}.
Example 3.3.48. For the formula ϕ(T, x, y) := Exy ∨ ∃z(Exz ∧ Tyz) the
relation ≺ϕ on a graph (V,E) is distance comparison:

(a, b) ≺ϕ (c, d) iff dist(a, b) < dist(c, d).

Stage comparison theorems are results about the definability of stage
comparison relations. For instance, Moschovakis [85] proved that the stage
comparison relations ≤ϕ and ≺ϕ of any positive first-order formula ϕ are
definable by a simultaneous induction over positive first-order formulae. For
results on the equivalence of IFP and LFP one needs a stage comparison
theorem for IFP inductions.

We first observe that the stage comparison relations for IFP inductions
are easily definable in IFP. For any formula ϕ(T, x̄), the stage comparison
relation ≺inf

ϕ is defined by the formula

[ifpx ≺ y . ϕ[Tu/u ≺ x](x) ∧ ¬ϕ[Tu/u ≺ x](y)](x, y).

However, what we need to show is that the stage comparison relation for IFP
inductions is in fact LFP-definable.
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Theorem 3.3.49 (Inflationary Stage Comparison). For any formula
ϕ(R, x) in FO or LFP, the stage comparison relation ≺inf

ϕ is definable in
LFP. On finite structures, it is even definable in positive LFP.

See [38, 63] for proofs in the case of finite structures and [80] for the more
difficult construction in the general case. From this result, the equivalence of
LFP on IFP follows easily.

Theorem 3.3.50 (Kreutzer). For every IFP-formula, there is an equivalent
LFP-formula.

Proof. For any formula ϕ(R, x), [ifpRx . ϕ](x) ≡ ϕ({y : y ≺inf
ϕ x}, x). �

Stage comparison theorems also have other interesting consequences. For
instance, Moschovakis’s Theorem implies that on finite structures, greatest
fixed points (i.e. negations of least fixed points) can be expressed in positive
LFP. This gives a normal form for LFP and IFP (see [67]).

Theorem 3.3.51 (Immerman). On finite structures, every LFP-formula
(and hence also every IFP-formula) is equivalent to a formula in LFP1.

This result fails on infinite structures. On infinite structures, there exist
LFP formulae that are not equivalent to positive formulae, and in fact the
alternation hierarchy of least and greatest fixed points is strict (see [20, 85]).

Exercise 3.3.52 Prove that every IFP-formula is equivalent to one that uses
ifp-operators only positively. Hint: assuming that structures contain at least
two elements and that a constant 0 is available, a formula ¬[ifpRx . ψ(R, x)]
is equivalent to an inflationary induction on a predicate Txy which, for
y �= 0, simulates the induction defined by ψ, checks whether the fixed point
has been reached, and then makes atoms Tx0 true if x is not contained in
the fixed point.

In finite model theory, owing to the Gurevich-Shelah Theorem, the two
logics LFP and IFP have often been used interchangeably. However, there are
significant differences that are sometimes overlooked. Despite the equivalence
of IFP and LFP, inflationary inductions are a more powerful concept than
monotone inductions. The translation from IFP-formulae to equivalent
LFP-formulae can make the formulae much more complicated, requires an
increase in the arity of fixed-point variables and, in the case of infinite
structures, introduces alternations between least and greatest fixed points.
Therefore it is often more convenient to use inflationary inductions in explicit
constructions, the advantage being that one is not restricted to inductions
over positive formulae. For an example, see the proof of Theorem 3.5.26
below. Furthermore, IFP is more robust, in the sense that inflationary fixed
points remain well defined even when other non-monotone operators (e.g.
generalized quantifiers) are added to the language (see, for instance, [35]).
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The differences between least and inflationary fixed points are particularly
significant in the context of modal logic, i.e. when we compare the modal
μ-calculus Lμ with its inflationary counterpart. For instance, Lμ has the
finite-model property, the satisfiability problem is decidable (complete for
EXPTIME), the model-checking problem is in NP ∩ Co-NP (and conjec-
tured by many to be solvable in polynomial time), and there are practical,
automata-based techniques for solving the algorithmic problems associated
with Lμ. Finally, in terms of expressive power, Lμ can be characterized as the
bisimulation-invariant fragment of monadic second-order logic (MSO) [69].
On the other hand, the inflationary counterpart of Lμ, the model iteration
calculus (MIC) [33], behaves very differently. The finite-model property
fails, the satisfiability problem is undecidable (and not even in the arithmetic
hierarchy), the model-checking problem is PSPACE-complete, and the
expressive power goes beyond monadic second-order logic even on words.
The appropriate model-checking games for inflationary fixed-point logics
such as IFP and MIC are backtracking games [34]. These games are
a generalization of parity games with an additional rule allowing players,
under certain conditions, to return to an earlier position in the play and
revise a choice or to force a countback on the number of moves. This new
feature makes backtracking games more powerful so that they can capture
inflationary inductions. Accordingly, winning strategies become more complex
objects and computationally harder than for parity games.

3.3.9 Partial Fixed-Point Logic

Another fixed-point logic that is relevant to finite structures is the
partial fixed-point logic (PFP). Let ψ(R, x) be an arbitrary formula
defining on a finite structure A a (not necessarily monotone) operator
Fψ : R �→ {a : A |= ψ(R, a)}, and consider the sequence of its finite stages
R0 := ∅, Rm+1 = Fψ(Rm).

This sequence is not necessarily increasing. Nevertheless, as A is finite,
the sequence either converges to a fixed point, or reaches a cycle with a
period greater than one. We define the partial fixed point of Fψ as the
fixed point that is reached in the former case, and as the empty relation
otherwise. The logic PFP is obtained by adding to first-order logic the
partial-fixed-point formation rule, which allows us to build from any
formula ψ(R, x) a formula [pfp Rx . ψ(R, x)](t), saying that t is contained in
the partial fixed point of the operator Fψ.

Note that if R occurs only positively in ψ, then

[lfp Rx . ψ(R, x)](t) ≡ [pfp Rx . ψ(R, x)](t),

so we have that LFP ≤ PFP. However, PFP seems to be much more powerful
than LFP. For instance, while a least-fixed-point induction on finite struc-
tures always reaches the fixed point in a polynomial number of iterations, a
partial-fixed-point induction may need an exponential number of stages.
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Example 3.3.53. Consider the sequence of stages Rm defined by the formula

ψ(R, x) :=
(
Rx ∧ ∃y(y < x ∧ ¬Ry)

)
∨
(
¬Rx ∧ ∀y(y < x→ Ry)

)
∨ ∀yRy

on a finite linear order (A,<). It is easily seen than the fixed point reached
by this induction is the set R = A, but before this fixed point is reached,
the induction goes in lexicographic order through all possible subsets of A.
Hence the fixed point is reached at stage 2n − 1, where n = |A|.

Simultaneous Inductions.

As in the case of LFP, one can also extend IFP and PFP by simultaneous
inductions over several formulae, but again, the simultaneous fixed-point
logics S-IFP and S-PFP are not more expressive than their simple variants.
However, the proof is a little different than in the case of LFP. It requires
that one encodes several relations into one and hence increases the arity of
the fixed point variables. As a consequence, it seems to be unknown whether
simultaneous monadic PFP collapses to simple monadic PFP.

Complexity

Although a PFP induction on a finite structure may go through exponentially
many stages (with respect to the cardinality of the structure), each stage can
be represented with polynomial storage space. As first-order formulae can be
evaluated efficiently, it follows by a simple induction that PFP-formulae can
be evaluated in polynomial space.

Proposition 3.3.54. For every formula ψ ∈ PFP, the set of finite models of
ψ is in PSPACE; in short: PFP ⊆ PSPACE.

On ordered structures, one can use techniques similar to those used in pre-
vious capturing results, to simulate polynomial-space-bounded computation
by PFP-formulae [2, 99].

Theorem 3.3.55 (Abiteboul, Vianu, and Vardi). On ordered finite
structures, PFPcaptures PSPACE.

Proof. It remains to prove that every class K of finite ordered structures that
is recognizable in PSPACE, can be defined by a PFP-formula.

Let M be a polynomially space-bounded deterministic Turing machine
with state set Q and alphabet Σ, recognizing (an encoding of) an ordered
structure (A, <) if and only if (A, <) ∈ K. Without loss of generality, we can
make the following assumptions. For input structures of cardinality n, M
requires space less than nk−2, for some fixed k. For any configuration C of M ,
let Next(C) denote its successor configuration. The transition function of M is
adjusted so that Next(C) = C if, and only if, C is an accepting configuration.
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We represent any configuration of M with a current state
q, tape inscription w1 · · ·wm, and head position i, by the word
#w1 · · ·wi−1(qwi)wi+1 · · ·wm−1# over the alphabet Γ := Σ∪ (Q×Σ)∪{#},
where m = nk and # is merely used as an end marker to make the following
description more uniform. When moving from one configuration to the next,
Turing machines make only local changes. We can therefore associate with
M a function f : Γ 3 → Γ such that, for any configuration C = c0 · · · cm, the
successor configuration Next(C) = c′0 · · · c′m is determined by the rules

c′0 = c′m = # and c′i = f(ci−1, ci, ci+1) for 1 ≤ i ≤ m− 1.

Recall that we encode structures so that there exist first-order formulae
βσ(y) such that (A, <) |= βσ(a) if and only the ath symbol of the input con-
figuration of M for input code(A, <) is σ. We now represent any configuration
C in the computation of M by a tuple C = (Cσ)σ∈Γ of k-ary relations, where

Cσ := {a : the a-th symbol of C is σ}.

The configuration at time t is the stage t + 1 of a simultaneous pfp
induction on (A, <), defined by the rules

C#y :=∀z(y ≤ z) ∨ ∀z(z ≤ y)

and, for all σ ∈ Γ − {#},

Cσy :=
(
βσ(y) ∧

∧

γ∈Γ
∀x¬Cγx

)
∨

∃x∃z
(
x + 1 = y ∧ y + 1 = z ∧

∨

f(α,β,γ)=σ

Cαx ∧ Cβy ∧Cγz)
)

The first rule just says that each stage represents a word starting and ending
with #. The other rules ensure that (1) if the given sequence C contains only
empty relations (i.e. if we are at stage 0), then the next stage represents the
input configuration, and (2) if the given sequence represents a configuration,
then the following stage represents its successor configuration.

By our convention, M accepts its input if and only the sequence of
configurations becomes stationary (i.e. reaches a fixed point). Hence M
accepts code(A, <) if and only if the relations defined by the simultaneous
pfp induction on A of the rules described above are non-empty. Hence K is
PFP-definable. �

An alternative characterization of PSPACE is possible in terms of the
database query language while consisting essentially of first-order relational
updates and while-loops. Vardi [99] proved that while captures PSPACE on
ordered finite structures and Abiteboul and Vianu proved that while and
PFP are equivalent on finite structures.
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Least Versus Partial Fixed-Point Logic

From the capturing results for PTIME and PSPACE we immediately obtain
the result that PTIME = PSPACE if, and only if, LFP = PFP on ordered
finite structures. The natural question arises of whether LFP and PFP
can be separated on the domain of all finite structures. For a number of
logics, separation results on arbitrary finite structures can be established by
relatively simple methods, even if the corresponding separation on ordered
structures would solve a major open problem in complexity theory. For
instance, we have proved by quite a simple argument that DTC � TC,
and it is also not very difficult to show that TC � LFP (indeed, TC is
contained in stratified Datalog, which is also strictly contained in LFP; see
Sect. 3.3.10). Further, it is trivial that LFP is less expressive than Σ1

1 on all
finite structures. However the situation is different for LFP vs. PFP.

Theorem 3.3.56 (Abiteboul and Vianu). LFP and PFP are equivalent
on finite structures if, and only if, PTIME = PSPACE.

3.3.10 Datalog and Stratified Datalog

Datalog and its extensions are a family of rule-based database query languages
that extend the conjunctive queries by a relational recursion mechanism
similar to the one used in fixed-point logics. Indeed, as we shall see, Datalog
can be seen as a fragment of least fixed point logic. For the purpose of
this section we simply identify a relational database with a finite relational
structure. This is not adequate for all aspects of database theory, but for
the questions considered here it is appropriate. For further information on
databases, see [1], for example.

Definition 3.3.57. A Datalog rule is an expression of the form
H ← B1 ∧ · · · ∧ Bm, where H , the head of the rule, is an atomic for-
mula Ru, and B1 ∧ · · · ∧ Bm, the body of the rule, is a conjunction of
literals (i.e. atoms or negated atoms) of the form Sv or ¬Sv where u, v are
tuples of variables or constants. The relation symbol R is called the head
predicate of the rule. We also allow Boolean head predicates. A Datalog
rule is positive if it does not contain negative literals.

A Datalog program Π is a finite collection of rules such that none of its
head predicates occurs negated in the body of any rule. The predicates that
appear only in the bodies of the rules are called input predicates. The input
vocabulary of Π is the set of input predicates and constants appearing in Π .

Example 3.3.58. The Datalog program Πreach consists of the three rules

Txy ← Exy, Txz ← Txy ∧ Tyz, Ry ← Tay.

The input vocabulary is {E, a}, and the head predicates are T and R.
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Given a structure A over the input vocabulary, the program com-
putes an interpretation of the head predicates, i.e. it defines an expansion
Π(A) := (A, R1, . . . , Rk) of A, where the Ri are the values of the head predi-
cates as computed by Π . This interpretation can be defined in several equiva-
lent ways, for instance via minimal-model semantics or fixed-point semantics.
We can read a Datalog rule ϕr := Rx ← B1 ∧ · · · ∧ Bm, and associate with
the program Π the universal closure of the conjunction over these formulae:

ψ[Π ] := ∀z
∧

ϕr∈Π
ϕr .

We can compare expansions of A by componentwise inclusion of the addi-
tional predicates: (A, R1, . . . , Rk) ⊆ (A, R′

1. . . . , R
′
k) if Ri ⊆ R′

i for all i.
Acording to the minimal-model semantics, Π(A) is the minimal expansion
(A, Rμ1 , . . . , R

μ
k ) that satisfies ψ[Π ].

Example 3.3.59. The formula associated with the program Πreach of
Example 3.3.58 is

∀x∀y∀z((Txy ← Exy) ∧ (Txz ← Txy ∧ Tyz) ∧ (Ry ← Tay)).

The minimal expansion of a graph G = (V,E) with a distinguished node
a is Πreach(G, a) = (G, a, T,R) where T is the transitive closure of E and R
is the set of points reachable by a path from a.

Exercise 3.3.60 Prove that minimal-model semantics is well-defined: for
every Datalog program Π and every input database A, there is a unique
minimal expansion of A that is a model of ψ[Π ].

For the case of fixed-point semantics, we read a rule Rx ← β(x, y)
as an update operator: whenever an instantiation β(a, b) of the body of the
rule is true for the current interpretation of the head predicates, make the
corresponding instantiation Ra of the head true. Initially, let all head pred-
icates be empty. At each stage, apply simultaneously the update operators
for all rules of the program to the current interpretation of (R1, . . . , Rk).
Iterate this operation until a fixed point (R∞

1 , . . . , R∞
k ) is reached. Now let

Π(A) := (A, R∞
1 , . . . , R∞

k ).

Exercise 3.3.61 Prove that minimal-model semantics and fixed-point
semantics coincide: for all Π and A, (Rμ1 , . . . , R

μ
k ) = (R∞

1 , . . . , R∞
k ).

Definition 3.3.62. A Datalog query is a pair (Π,R) consisting of a
Datalog program Π and a designated head predicate R of Π . With every
structure A, the query (Π,R) associates the result (Π,R)A, the interpretation
of R as computed by Π from the input A.

We now relate Datalog to LFP. We shall show that each Datalog query
(Π,R) is equivalent to a formula ψ(x) ∈ LFP, in fact one of very special form.
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Let Π be a Datalog program with input vocabulary τ and head
predicates R1, . . . , Rk. We first normalize the rules such that all rules
with head predicate Ri have the same head Rix1 · · ·xki . This can be
done by appropriate substitutions in the rule body and by adding
equalities. For instance, a rule Rxyyx ← β(x, y, z) can be rewritten as
Rx1x2x3x4 ← β(x1, x2, y) ∧ x3 = x2 ∧ x4 = x1. We then have a program
containing, for each head predicate Ri, rules rij of the form Rix← βij(x, y),
where βij is a conjunction of literals and equalities. We then combine the
update operators associated with the same head predicate and describe the
update of Ri by the existential first-order formula γi(x) :=

∨
j ∃yβij(x, y). As

a consequence, the fixed-point semantics of Π is described by the system

S :=

⎧
⎪⎨

⎪⎩

R1x := γ1

...
Rkx := γk

of first-order update rules, and the query (Π,Ri) is equivalent to the formula
[lfpRi : S](x). Hence every Datalog query is equivalent to an LFP-formula,
in which fixed-point operators are applied only to existential formulae.

Definition 3.3.63. Existential fixed-point logic, denoted EFP, is the set
of (simultaneous) LFP-formulae without universal quantifiers and without
gfp-operators, and where negations are applied to atomic formulae only.

We have seen that Datalog ⊆ EFP. The converse is also true, which can be
established by a straightforward induction: with every formula ψ ∈ EFP one
associates a Datalog program Πψ with a distinguished head predicate Hψ such
that the query (Πψ, Hψ) is equivalent to ψ. We leave the details as an exercise.

Proposition 3.3.64. Datalog is equivalent to EFP.

We know that LFP captures PTIME on ordered finite structures. The
question arises of whether Datalog is sufficiently powerful to do the same.
The answer depends on the precise variant of Datalog and on the notion of
ordered structures that is used. We distinguish three cases.

(1) A simple monotonicity argument shows that Datalog is weaker than
PTIME on structures where only a linear order, but not a successor relation, is
given. If A is a substructure of B, then (Π,R)A ⊆ (Π,R)B for every Datalog
query (Π,R). Of course, there even exist very simple first-order queries that
are not monotone in this sense. Note that this argument does break down on
databases where a successor relation S (rather than just a linear order), and
constants 0 and e for the first and last elements are given. Exercise: why?

(2) In the literature, Datalog programs are often required to contain only
positive rules, i.e. the input predicates also can be used only positively. This
restricted variant is too weak to capture PTIME, even on successor structures.
If input predicates can be used only positively, then queries are monotone
under extensions of the input relations: if a database B is obtained from A
by augmenting some of the input relations, then again (Π,R)A ⊆ (Π,R)B.
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Exercise 3.3.65 Prove this monotonocity property, and give examples of
first-order queries that cannot be defined by Datalog programs.

(3) In the case of programs with negations of input predicates and
databases with a successor relation and constants 0 and e for the first
and last elements, we can capture PTIME by Datalog. This was originally
established in [13, 91] and is implicit also in [67].

Theorem 3.3.66 (Blass, Gurevich, and Papadimitriou). On successor
structures, Datalog (with negations of input predicates) captures PTIME.

Proof. This result can be established in several ways, for instance by a
reduction from Σ1

1-HORN (making use of the fact that PTIME is closed
under complement). Instead, we give a direct proof.

It is clear that Datalog queries are computable in polynomial time. It
remains to prove that every class K of finite successor structures that is
recognizable in PTIME can be defined by a Boolean Datalog query.

Let M be a polynomial-time Turing machine with state set Q and
alphabet Σ, recognizing (an encoding of) a successor structure A if and only
if A ∈ K. We denote the cardinality of the input structure A by n and assume
that the computation time of M on A is less than nk.

The construction is similar to the proof of Theorem 3.3.55. Configurations
of M are represented by words #w1 · · ·wi−1(qwi)wi+1 · · ·wm−1# over the
alphabet Γ := Σ∪(Q×Σ)∪{#}, where m = nk, and we describe the behaviour
of M by a function f : Γ 3 → Γ such that, for any configuration C = c0 · · · cm,
the successor configuration Next(C) = c′0 · · · c′m is determined by the rules

c′0 = c′m = # and c′i = f(ci−1, ci, ci+1) for 1 ≤ i ≤ m− 1.

Let S be a 2k-ary relation symbol and let ΠS be a Datalog program with
head predicate S, computing the successor relation on k-tuples (associated
with the lexicographic order defined by the given successor relation). Recall
that we can encode successor structures so that there exist quantifier-free
formulae βσ(y) such that A |= βσ(a) if, and only if, the ath symbol of the
input configuration of M for code(A) is σ. Let (Πσ, Hσ) be a Datalog query
equivalent to βσ(y).

We represent the computation of M by a tuple C = (Cσ)σ∈Γ of 2k-ary
relations, where

Cσ := {(a, t) : the ath symbol of the configuration at time t is σ}.

The Datalog program associated with M consists of

(1) the program ΠS defining the successor relation on k-tuples;
(2) the programs Πσ for describing the input;
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(3) the rules

C#0 t
C#e t

Cσy 0 ← Hσy for all σ ∈ Γ − {#};

(4) for all α, β, γ, σ with f(α, β, γ) = σ, the rule

Cσy t
′ ← Sx y ∧ Sy z ∧ St t

′ ∧ Cαxt ∧ Cβy t ∧ Cγz t;

(5) the rule

Acc ← Cqwx t for any accepting state q and any symbol w.

The first two rules in (3) say that each configuration starts and ends
with #; the following set of rules ensures that the configuration at time 0
is the input configuration. The rules in (4) imply that from time t to time
t
′ = t + 1 the computation proceeds as required by M , and the last rule

makes the Boolean predicate Acc true if and only if an accepting state has
been reached. Obviously, M accepts the input structure A if, and only if, the
query (ΠM ,Acc) evaluates to true on A. �

Almost the same proof shows that the expression complexity of Datalog
(and hence of LFP) is EXPTIME-complete (see also Theorem 3.3.36).

Theorem 3.3.67. The evaluation problem for Datalog programs (with head
predicates of unbounded arity) is complete for EXPTIME, even for programs
with only positive rules, and for a fixed database with only two elements.

Proof. By the results of Section 3.3.5, LFP-formulae, and hence also Datalog
programs, can be evaluated in polynomial time with respect to the size of
the input structure and in exponential time with respect to the length of the
formula (or program).

To prove completeness, we fix a database A with two elements and constant
symbols 0, 1 (or, alternatively, two unary relations P0 = {0} and P1 = {1}).
Let M be a deterministic Turing machine that accepts or rejects input words
w = w0 · · ·wm−1 ∈ {0, 1}∗ in time 2m

d

(for some fixed d). For every input x
for M , we construct a Datalog program ΠM,w which evaluates, on the fixed
database A, a Boolean head predicate Acc to true if, and only if, M accepts w.

The construction is similar to that in the proof of Theorem 3.3.66, with
the following two differences. Whereas in the previous proof k was fixed and
n depended on the input, it is now the other way round, with n := 2 and
k := md. Further, the description of the input configuration is now simpler:
we just explicitly list the atomic facts defining the input configuration for the
given input w. Note that this is the only part of the program that depends
on w; the remaining rules depend only on M and the length of the input.
Finally note that the program contains only positive rules. �
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Stratified Datalog

Datalog defines in a natural way queries that require recursion (such as
transitive closure), but is very weak in other respects, mainly because it does
not include negation.

There exist various possible ways to add negation to Datalog.

Definition 3.3.68. A stratified Datalog program is a sequence
Π = (Π0, . . . , Πr) of basic Datalog programs, which are called the
strata of Π , such that each of the head predicates of Π is a head predicate
in precisely one stratum Πi and is used as an input predicate only in higher
strata Πj , where j > i. In particular, this means that

(1) if a head predicate of stratum Πj occurs positively in the body of a rule
of stratum Πi, then j ≤ i, and

(2) if a head predicate of stratum Πj occurs negatively in the body of a rule
of stratum Πi, then j < i.

The semantics of a stratified program is defined stratum by stratum.
The input predicates of a stratum Πi are either input predicates of the
entire program Π or are head predicates of a lower stratum. Hence, once the
lower strata are evaluated, we can compute the interpretation of the head
predicates of Πi as in the case of basic Datalog programs.

Clearly the power of stratified Datalog is between that of Datalog and
LFP, and hence stratified Datalog provides yet another formalism that
captures PTIME on ordered structures. On unordered structures stratified
Datalog is strictly more expressive than Datalog (as it includes all of
first-order logic) but strictly less powerful than LFP. The main example
separating LFP from Stratified Datalog is the Game query, which defines
the winning positions of Player 0 in a strictly alternating game. It is defined
by the LFP formula [lfpWx . ∃y(Exy ∧ ∀z(Eyz → Wz)](x). This involves a
recursion through a universal quantifier, which in general cannot be done in
stratified Datalog [31, 79].

Theorem 3.3.69 (Dahlhaus and Kolaitis). No stratified Datalog program
can express the Game query. Hence stratified Datalog � LFP.

Example 3.3.70. Another interesting class of examples showing the limits
of stratified Datalog is that of well-foundedness properties, or statements
saying that on all infinite paths one will eventually hit a node with a certain
property P . These are typical statements in the field of verification (expressed
in CTL by the formula AFP ).

In LFP, the well-foundedness of a partial order ≺ would be expressed as
∀y[lfpWy . ∀x(x ≺ y →Wx)](y). The CTL-formula AFP is expressed in Lμ
by μX.P ∨ �X and in LFP by [lfpRx . Px ∨ ∀y(Exy → Ry)](x).

On finite structures, such properties are definable by stratified Datalog
programs, since they are essentially negations of reachability problems for
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cycles. Indeed, AFP means that there is no path that eventually cycles and
on which P is globally false. This can be expressed by the following stratified
program:

Txy ← ¬Px ∧ Exy ∧ ¬Py Txz ← Txy ∧ Eyz ∧ ¬Pz

Sx← Txx Sx← ¬Px ∧ Exy ∧ Sy

Rx← ¬Sx

The first stratum computes the set T of all pairs of nodes (u, v) such that
there exists a path from u to v on which P is false, and the set S of all nodes
from which there exists such a path that eventually cycles. Here the finiteness
of the graph is used in an essential way, because only this guarantees that
every infinite path eventually reaches a cycle. The second stratum takes the
complement of S.

However, it can be shown that no stratified Datalog program can express
such statements on infinite structures (even countable ones).

Another variant of Datalog, called Datalog LITE, which can express all
CTL properties and moreover admits linear-time evaluation algorithms (and
which is incomparable with stratified Datalog), has been defined and studied
in [45].

A stratified Datalog program is linear if in the body of each rule there is
at most one occurrence of a head predicate of the same stratum (but there
may be arbitrary many occurrences of head predicates from lower strata).

Example 3.3.71. The program Πreach in Example 3.3.58 is not linear, but by
replacing the second, non-linear rule Txz ← Txy ∧ Tyz by the linear rule
Txz ← Txy ∧ Eyz we obtain an equivalent linear program. However, one
pays a price for the linearization. The original program reaches the fixed
point after O(logm) iterations, while the linear program needs m iterations,
where m is the length of the longest path in the graph.

Linear programs suffice to define transitive closures, so it follows by a
straightforward induction that TC ⊆ linear stratified Datalog. The converse
is also true (see [38, 46]).

Proposition 3.3.72. Linear stratified Datalog is equivalent to TC.

Corollary 3.3.73. On ordered structures, linear stratified Datalog captures
NLOGSPACE.

3.4 Logics with Counting

From the point of view of expressiveness, first-order logic has two main
deficiencies: it lacks the power to express anything that requires recursion
(the simplest example is transitive closure) and it cannot count, as witnessed
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by the impossibility to express that a structure has even cardinality, or,
more generally, by the 0-1 law. We have already discussed a number of logics
that add recursion in one way or another to FO (or part of it), notably the
various forms of fixed-point logic. On ordered finite structures, some of these
logics can express precisely the queries that are computable in PTIME or
PSPACE. However, on arbitrary finite structures they do not, and almost all
known examples showing this involve counting. Whereas in the presence of
an ordering, the ability to count is inherent in fixed-point logic, hardly any
of this ability is retained in its absence. For instance, as LFP and PFP are
fragments of Lω∞ω, the 0-1 law also holds for them.

Therefore Immerman proposed that counting quantifiers should be
added to logics and asked whether a suitable variant of fixed-point logic
with counting would suffice to capture PTIME. Although Cai, Fürer and
Immerman [23] eventually answered this question negatively, fixed-point
logic with counting has turned out to be an important and robust logic, that
defines a natural level of expressiveness and allows one to capture PTIME
on interesting classes of structures.

3.4.1 Logics with Counting Terms

There are different ways of adding counting mechanisms to a logic, which
are not necessarily equivalent. The most straightforward possibility is the
addition of quantifiers of the form ∃≥2, ∃≥3, etc., with the obvious meaning.
While this is perfectly reasonable for bounded-variable fragments of first-
order logic or infinitary logic (see e.g. [58, 89]), it is not general enough for
fixed-point logic, because it does not allow for recursion over the counting
parameters i in quantifiers ∃≥ix. In fact, if the counting parameters are fixed
numbers, then adjoining the quantifiers ∃≥ix does not give additional power
to logics such as FO or LFP, since they are closed under the replacement
of ∃≥i by i existential quantifiers (where as their restrictions to bounded
width are not). These counting parameters should therefore be considered
as variables that range over natural numbers. To define in a precise way a
logic with counting and recursion, one extends the original objects of study,
namely finite (one-sorted) structures A, to two-sorted auxiliary structures A∗

with a second numerical (but also finite) sort.

Definition 3.4.1. With any one-sorted finite structure A with universe A,
we associate the two-sorted structure A∗ := A ∪̇ 〈{0, . . . , |A|};≤, 0, e〉, where
≤ is the canonical ordering on {0, . . . , |A|}, and 0 and e stand for the first
and the last element. Thus, we have taken the disjoint union of A with a
linear order of length |A|+ 1.

We start with first-order logic over two-sorted vocabularies σ ∪ {≤, 0, e},
with semantics over structures A∗ defined in the obvious way. We shall use
Latin letters x, y, z, . . . for the variables over the first sort, and Greek letters
λ, μ, ν, . . . for variables over the second sort. The two sorts are related by



188 3 Finite Model Theory and Descriptive Complexity

counting terms, defined by the following rule. Let ϕ(x) be a formula with a
variable x (over the first sort) among its free variables. Then #x[ϕ] is a term
in the second sort, with the set of free variables free(#x[ϕ]) = free(ϕ) − {x}.
The value of #x[ϕ] is the number of elements a that satisfy ϕ(a).

Counting logics of this form were introduced by Grädel and Otto [54]
and have been studied in detail in [89]. We start with first-order logic with
counting, denoted by (FO + C), which is the closure of two-sorted first-order
logic under counting terms. Here are two simple examples that illustrate the
use of counting terms.

Example 3.4.2. On a undirected graph G = (V,E), the formula
∀x∀y(#z [Exz] = #z [Eyz]) expresses the assertion that every node has
the same degree, i.e., that G is regular.

Example 3.4.3. We present below a formula ψ(E1, E2) ∈ (FO + C) which
expresses the assertion that two equivalence relations E1 and E2 are isomor-
phic; of course a necessary and sufficient condition for this is that for every
i, they have the same number of elements in equivalence classes of size i:

ψ(E1, E2) ≡ (∀μ)(#x[#y[E1xy] = μ] = #x[#y[E2xy] = μ]).

3.4.2 Fixed-Point Logic with Counting

We now define (inflationary) fixed point logic with counting (IFP +
C) and partial fixed point logic with counting (PFP + C) by adding
to (FO + C) the usual rules for building inflationary or partial fixed points,
ranging over both sorts.

Definition 3.4.4. Inflationary fixed point logic with counting, (IFP + C), is
the closure of two-sorted first-order logic under the following rules:

(1) The rule for building counting terms.
(2) The usual rules of first-order logic for building terms and formulae.
(3) The fixed-point formation rule. Suppose that ψ(R, x, μ) is a formula of

vocabulary τ ∪ {R} where x = x1, . . . , xk, μ = μ1, . . . , μ�, and R has
mixed arity (k, �), and that (u, ν) is a k+ �-tuple of first- and second-sort
terms, respectively. Then

[ifp Rxμ . ψ](u, ν)

is a formula of vocabulary τ .

The semantics of [ifp Rxμ . ψ] on A∗ is defined in the same way as for
the logic IFP, namely as the inflationary fixed point of the operator

Fψ : R �−→ R ∪ {(a, i) | (A∗, R) |= ψ(a, i)}.
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The definition of (PFP + C) is analogous, where we replace inflationary
fixed points by partial ones. In the literature, one also finds different variants
of fixed-point logic with counting where the two sorts are related by counting
quantifiers rather than counting terms. Counting quantifiers have the form
(∃i x) for ‘there exist at least i x’, where i is a second-sort variable. It is
obvious that the two definitions are equivalent. In fact, (IFP + C) is a very
robust logic. For instance, its expressive power does not change if one permits
counting over tuples, even of mixed type, i.e. terms of the form #x,μϕ. One
can of course also define least fixed-point logic with counting, (LFP + C),
but one has to be careful with the positivity requirement (which is more
natural when one uses counting quantifiers rather than counting terms). The
equivalence of LFP and IFP readily translates to (LFP + C) ≡ (IFP + C).
Further, there are a number of other logical formalizations of the concept of
inductive definability with counting that turn out to have the same expressive
power as (IFP + C) (see [54] and Sect.3.4.3 below for details).

Example 3.4.5. An interesting example of an (IFP + C)-definable query is the
method of stable colourings for graph-canonization. Given a graph G with a
colouring f : V → 0, . . . , r of its vertices, we define a refinement f ′ of f , giving
to a vertex x the new colour f ′x = (fx, n1, . . . , nr) where ni = #y[Exy∧(fy =
i)]. The new colours can be sorted lexicographically so that they again form
an initial subset of N. Then the process can be iterated until a fixed point, the
stable colouring of G is reached. It is easy to see that the stable colouring of a
graph is polynomial-time computable and uniformly definable in (IFP + C).

On many graphs, the stable colouring uniquely identifies each vertex,
i.e. no two distinct vertices get the same stable colour. This is the case, for
instance, for all trees. Further, Babai, Erdös, and Selkow [8] proved that the
probability that this happens on a random graph with n nodes approaches 1
as n goes to infinity. Thus stable colourings provide a polynomial-time graph
canonization algorithm for almost all finite graphs.

We now discuss the expressive power and evaluation complexity of fixed-
point logic with counting. We are mainly interested in (IFP + C)-formulae
and (PFP + C)-formulae without free variables over the second sort, so that
we can compare them with the usual logics without counting.

Exercise 3.4.6 Even without making use of counting terms, IFP over two-
sorted structures A∗ is more expressive than IFP over A. To prove this, con-
struct a two-sorted IFP-sentence ψ such that A∗ |= ψ if, and only if, |A| is even.

It is clear that counting terms can be computed in polynomial-time.
Hence the data complexity remains in PTIME for (IFP + C) and in PSPACE
for (PFP + C). We shall see below that these inclusions are strict.

Theorem 3.4.7. On finite structures,

(1) IFP � (IFP + C) � PTIME.
(2) PFP � (PFP + C) � PSPACE.
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Infinitary Logic with Counting

Let Ck∞ω be the infinitary logic with k variables Lk∞ω, extended by the quanti-
fiers ∃≥m (‘there exist at least m’) for all m ∈ N. Further, let Cω∞ω :=

⋃
k C

k∞ω .

Proposition 3.4.8. (IFP + C) ⊆ Cω∞ω.

Due to the two-sorted framework, the proof of this result is a bit more
involved than for the corresponding result without counting, but not really
difficult. We refer to [54, 89] for details.

The separation of (IFP + C) from PTIME has been established by Cai,
Fürer, and Immerman [23]. The proof also provides an analysis of the method
of stable colourings for graph canonization. We have deswcribed this method
in its simplest form in Example 3.4.5. More sophisticated variants compute
and refine colourings of k-tuples of vertices. This is called the k-dimensional
Weisfeiler–Lehman method and, in logical terms, it amounts to labelling
each k-tuple by its type in k + 1-variable logic with counting quantifiers. It
was conjectured that this method could provide a polynomial-time algorithm
for graph isomorphism, at least for graphs of bounded degree. However,
Cai, Fürer, and Immerman were able to construct two families (Gn)n∈N and
(Hn)n∈N of graphs such that on one hand, Gn and Hn have O(n) nodes and
degree three, and admit a linear-time canonization algorithm, but on the
other hand, in first-order (or infinitary) logic with counting, Ω(n) variables
are necessary to distinguish between Gn and Hn. In particular, this implies
Theorem 3.4.7.

Inflationary vs. Partial Fixed-Points

By Theorem 3.3.56, partial fixed-point logic collapses to inflationary fixed-
point logic if, and only if, PTIME = PSPACE. The analogous result in the
presence of counting is also true [54, 89]: PTIME = PSPACE ⇐⇒ (IFP + C)
= (PFP + C).

3.4.3 Datalog with Counting

Fixed-point formulae have the reputation of being difficult to read, and many
people find formalisms such as Datalog easier to understand. In the presence
of a successor relation, Datalog (with negation over input predicates) is
sufficient to capture PTIME and hence is equally expressive as LFP. In
general, however, Datalog and even its most natural extensions, notably
stratified Datalog, are weaker than LFP.

Counting terms can also be added to Datalog. We conclude this section
by discussing Datalog with counting. We show that (Datalog + C) is closed
under negation and equivalent to (IFP + C). In the presence of counting,
the common extensions of Datalog, notably stratified Datalog, are therefore
equivalent to Datalog.
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Definition 3.4.9. Datalog with counting, denoted by (Datalog + C),
extends Datalog by allowing two-sorted head predicates and counting terms.
The two-sorted head atoms have the form Rxμ, where x ranges over the first
sort, i.e. over elements of the input database A, and μ ranges over the second
sort. For any atom Rxyμ we have a counting term #x[Rxyμ]. A term over
the second sort is called an arithmetical term. The arithmetical terms are
either 0, e, counting terms, or t + 1, where t is also an arithmetical term.
Thus, a program in (Datalog + C) is a finite set of clauses of the form

H ← B1 ∧ · · · ∧Bm

where the head H is an atomic formula R(x, μ), and B1, . . . , Bm are atomic
formulae Rxμ or equalities of terms (over the first or the second sort).

For every input database, the program computes intensional relations
via the inflationary fixed-point semantics. Note that for classical Datalog
programs, it makes no difference whether the fixed-point semantics is defined
to be inflationary or not, since the underlying operator is monotone anyway.
However, for programs in (Datalog + C), the semantics has to be inflationary,
since otherwise, the equalities of arithmetical terms give rise to non-monotone
operators. For the same reason, the minimum-model semantics will no longer
be defined. Since inflationary fixed-point semantics is one of the various
equivalent ways to define the semantics of Datalog, both the syntax and the
semantics of (Datalog + C) generalize Datalog in a natural way.

One could also introduce counting in an (at first sight) more general form,
namely by allowing counting terms of the form #x,μ[Rxμyν]. While this may
be convenient for writing a program in shorter and more understandable
form, it does not affect the power of (Datalog + C).

Exercise 3.4.10 [54] Prove that counting over tuples, even of mixed type,
does not increase the expressive power of (Datalog + C).

Hence cardinalities of arbitrary predicates can be equated in a Datalog
program: we take the liberty of writing equalities such as |Q| = |R| in the
body of a rule, for simplicity. The following technical lemma is essential for
reducing (IFP + C) to (Datalog + C).

Lemma 3.4.11. Let Π be a (Datalog + C) program with head predicates
Q1, . . . , Qr. There exists another (Datalog + C) program Π ′, whose head
predicates include Q1, . . . , Qr and a Boolean control predicate C∗ such that

• (Π ′, Qi) = (Π,Qi) for all i;
• (Π ′, C∗) is true on all databases and C∗ becomes true only at the last

stage of the evaluation of Π ′.

Proof. In addition to C∗, we add a unary head predicate C0 and, for every
head predicate Qi of Π a new head predicate Q′

i of the same arity. Then, Π ′

is obtained by adding the following clauses to Π :
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C0x

Q′
ixμ← Qixμ for 1 ≤ i ≤ r

C∗ ← C0x ∧ (|Q1| = |Q′
1|) ∧ · · · ∧ (|Qr| = |Q′

r|)

Observe that Q′
i simply lags one step behind Qi. The atom C0x is necessary

to avoid the possibility that C∗ is set to true in the first stage. �

Lemma 3.4.11 essentially says that we can attach to any program a
Boolean control predicate which becomes true when the evaluation of the
program is terminated. We can then compose two Datalog programs while
making sure that the evaluation of the second program starts only after
the first has been terminated. As an initial application, we shall show that
(Datalog + C) is closed under negation.

Lemma 3.4.12. The complement of a (Datalog + C) query is also a
(Datalog + C) query.

Proof. Let (Π,Q) be a (Datalog + C) query, and let Π ′ be the program
specified in Lemma 3.4.11. Take a new variable z, and new head predicates
Q̃ and R with arity(R) = arity(Q) and arity(Q̃) = arity(Q) + 1. Construct
Π ′′ by adding to Π ′ the rules

Q̃xμz ← Qxμ

Rxμ← C∗ ∧ (#z[Q̃xμz] = 0).

The query (Π ′′, R) is the complement of (Π,Q). �

Difficulties in expressing negation are the reason why, in the absence of
counting (or of an ordering), Datalog is weaker than fixed-point logic. Also,
the limited form of negation that is available in Stratified Datalog (which
does not allow for ‘recursion through negation’) does not suffice to express
all fixed-point queries. (Datalog + C) does not have these limitations, and is
equally expressive as (IFP + C).

Theorem 3.4.13 (Grädel and Otto). (Datalog + C) ≡ (IFP + C).

It is obvious that (Datalog + C) ⊆ (IFP + C). For the converse, we can
construct by induction, for every formula ψ ∈ (IFP + C), a (Datalog + C)
program Πψ with goal predicate Qψ such that (Πψ , Qψ) is equivalent to ψ.

Exercise 3.4.14 For atomic formulae, disjunctions, and existential quan-
tification the construction is obvious, and closure under negation has
already been proved. Complete the proof for applications of counting
terms, i.e formulae ψ(y, μ, ν) := #x[ϕ(x, y, μ)] = ν, and fixed point formulae
ψ := [ifpRxμ . ϕ(R, x, μ)](y, ν). The construction makes use of Lemma 3.4.11.
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Example 3.4.15. To illustrate the expressive power of (Datalog + C) we show
below a program for the Game query (for strictly alternating games). The
Game query is the canonical example that separates LFP from Stratified Dat-
alog [31, 79]. Game is definable in fixed-point logic, by the formula [lfpWx .
∃y(Exy∧∀z(Eyz → Wz))](x) that defines the winning positions for Player 0.

Here is a (Datalog + C) program with goal predicate Z, defining Game:

Wxλ← Exy ∧ V yμ ∧ λ = μ + 1
Fyzμ← Eyz ∧Wzμ

V yμ← #z[Eyz] = #z[Fyzμ]
Zx←Wxμ

The evaluation of this program on a game graph G assigns to W (or V ) a set of
pairs (x, μ) ∈ V ×N, such that Player 0 has a winning strategy from position
x in at most μ moves when she (or Player 1, respectively) begins the game.

3.5 Capturing PTIME via Canonization

We have seen that there are a number of logics that capture polynomial time
on ordered finite structures, but none of them suffices to express all of PTIME
in the absence of a linear order. Indeed, it has been conjectured that no logic
whatsoever can capture PTIME on the domain of all finite structures. We
shall discuss this problem further at the end of this section. But, of course,
even if this conjecture should turn out to be true, it remains an important
issue to capture PTIME on other relevant domains besides ordered structures.

3.5.1 Definable Linear Orders

An obvious approach is to try to define linear orders and then apply the
known results for capturing complexity classes on ordered structures.

Definition 3.5.1. Let D be a domain of finite structures and let L a logic. We
say thatD admits L-definable linear orders if, for every vocabulary τ , there
exists a formula ψ(x, y, z̄) ∈ L(τ) such that there exists in every structure A ∈
D(τ) a tuple c̄ for which the relation {(a, b) : A |= ψ(a, b, c)} is a linear order on
A. The elements in c are called the parameters of the order defined by ψ on A.

Example 3.5.2. Let D consist of all structures (A,E,R1, . . . , ) such that
(A,E) is an undirected cycle. D admits LFP-definable linear orders (with
two parameters), via the formula

ψ(x, y, z1, z2) := Ez1z2 ∧ [lfpRxy . (x = z1 ∧ y = z2)∨∃u(Rxu ∧Euy ∧ y �= z1)

∨∃u(Ruy ∧Eux ∧ x �= y](x, y).

Furthermore, straightforward automorphism arguments show that we cannot
define linear orders with fewer than two parameters.
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Exercise 3.5.3 Let D be the domain of structures (A,E,R1, . . . , ) such
that (A,E) is isomorphic to a finite rectangular grid. Show that D admits
LFP-definable linear orders.

Exercise 3.5.4 Let K be a class of τ -structures with the following property.
For every m ∈ N, there exists a structure A ∈ K such that for every m-tuple
a in A there exists a non-trivial automorphism of A, a. Then K does not
admit definable orders in any logic.

On any domain that admits LFP-definable linear orders, we can capture
PTIME by using LFP-formulae that express polynomial-time properties on
ordered structures, and modify them appropriately.

Proposition 3.5.5. If D admits LFP-definable linear orders, then LFP
captures polynomial time on D.

Proof. It only remains to show that every polynomial-time model class K ⊆
D(τ) is L-definable. Let ϕ(x, y, z) be a formula defining a linear order on
the structures in D(τ). As LFP captures PTIME on ordered structures, there
exists a formula ψ ∈ LFP(τ∪{<}) such that, for every structure A ∈ D(τ) and
every linear order < on A, we have that (A, <) |= ψ iff A ∈ K. It follows that

A ∈ K ⇐⇒ A |= ∃z
(

“{(x, y) : ϕ(x, y, z)} is a linear order”∧

ψ[u < v/ϕ(u, v, z)]
)
,

where ψ[u < v/ϕ(u, v, z)] is the formula obtained from ψ by replacing every
atom of the form u < v by ϕ(u, v, z). �

3.5.2 Canonizations and Interpretations

Let S be any set and let ∼ be an equivalence relation on S. A canonization
function for (S,∼) is a function f : S → S associating with every element a
canonical member of its equivalence class. That means that f(s) ∼ s for all
s ∈ S, and f(s) = f(s′) whenever s ∼ s′.

In finite model theory, we are interested in canonization algorithms for
finite structures, either up to isomorphism or up to a coarser equivalence rela-
tion, such as indistinguishability in some logic or bisimulation. As algorithms
take encodings of structures as inputs, and as the encoding of a structure is
determined by an ordering of its universe, we can view canonization of struc-
tures as an operation that associates with every structure A an ordered one,
say (A′, <), such that A′ is equivalent to A, and such that equivalent structures
are mapped to the same ordered structure (and hence the same encoding).

For a class K of structures, we write K< for the class of expansions (A, <)
of structures A ∈ K by some linear order.
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Definition 3.5.6. Let K be a class of finite τ -structures, and let ∼ be an
equivalence relation on K. A canonization function for ∼ on K is a function
f : K → K< that associates with every structure A ∈ K an ordered structure
f(A) = (A′, <) with A′ ∼ A, such that f(A) ∼= f(B) whenever A ∼ B.

Interpretations

We are especially interested in canonizations that are defined by interpre-
tations. The notion of an interpretation is very important in mathematical
logic, and for model theory in particular. Interpretations are used to define
a copy of a structure inside another one, and thus permit us to transfer
definability, decidability, and complexity results between theories.

Definition 3.5.7. Let L be a logic, let σ, τ be vocabularies, where
τ = {R1, . . . , Rm} is relational, and let ri be the arity of Ri. A (one-
dimensional) L[σ, τ ]-interpretation is given by a sequence I of formulae
in L(σ) consisting of

• δ(x), called the domain formula,
• ε(x, y), called the equality formula, and,
• for every relation symbol R ∈ τ (of arity r), a formula ϕR(x1, . . . , xr).

An L[σ, τ ]-interpretation induces two mappings, one between structures,
and the other between formulae. For a τ -structure A and a σ-structure B, we
say that I interprets A in B (in short, I(B) = A) if there exists a surjective
map h : δB → A, called the coordinate map, such that

• for all b, c ∈ δB,
B |= ε(b, c) ⇐⇒ h(b) = h(c);

• for every relation R of A and all b1, . . . , br ∈ δB,

B |= ϕR(b1, . . . , bk) ⇐⇒ (h(b1), . . . , h(bk)) ∈ R,

i.e. h−1(R) = (δB)k ∩ ϕB
R .

Hence I = 〈δ, ε, ϕR1 , . . . , ϕRm〉 defines (together with the function
h : δB → A) an interpretation of A = (A,R1, . . . , Rm) in B if and only if
ε(x, y) defines a congruence on the structure (δB, ϕB

R1
, . . . , ϕB

Rm
) and h is an

isomorphism from the quotient structure (δB, ϕB
R1

, . . . , ϕB
Rm

)/εB to A.
Besides the mapping B �→ I(B) from σ-structures to τ -structures, I also

defines a mapping from τ -formulae to σ-formulae. With every τ -formula ψ it
associates a σ-formula ψI , which is obtained by relativizing every quantifier
Qx to δ(x), replacing equalities u = v by ε(u, v), and replacing every atom
Ru by the corresponding formula ϕR(u).

Lemma 3.5.8 (Interpretation Lemma). For every interpretation I and
every structure A, we have that

A |= ψI ⇐⇒ I(A) |= ψ.
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We shall omit δ or ε from an interpretation if they are trivial, in the
sense that δ(x) holds for all x and that ε(x, y) is equivalent to x = y.
The notion of an interpretation can be generalized in various ways. In
particular, a k-dimensional interpretation is given by a sequence
δ(x), ε(x, y), ϕR1(x1, . . . , xr1), . . . , ϕRm(x1, . . . , xrm), where x, y, x1, . . . are
disjoint k-tuples of distinct variables. A k-dimensional interpretation of A in
B represents elements of A by elements or equivalence classes of Bk, rather
than B.

Exercise 3.5.9 Show that up to first-order interpretation, all finite structures
are graphs (see e.g. [66, Chapter 5] and [38, Chapter 11.2]). More precisely,
for every vocabulary τ , construct an FO[{E}, τ ]-interpretation I and an
FO[τ, {E}]-interpretation J such that, for every finite structure A (with at
least two elements), I(A) is a graph and J(I(A)) ∼= A. It then follows that
for every model class K ⊆ Fin(τ), K is decidable in polynomial time if, and
only if, the class of graphs {I(A) : A ∈ K} is so.

Definition 3.5.10. Let L be a logic and ∼ an equivalence relation on a class
K of τ -structures. We say that (K,∼) admits L-definable canonization if
there exists an L[τ, τ ∪{<}]-interpretation I such that the function A �→ I(A)
is a canonization function for ∼. For any domain D of structures, we say that
(D,∼) admits L-definable canonization if (D(τ),∼) does for every vocabulary
τ . Finally, we say that D admits L-definable canonization if (D,∼=) does.

Example 3.5.11. (Definable canonization versus definability of order.)
Whenever D admits L-definable linear orders, and L is closed under first-order
operations, D also admits L-definable canonization. This is obvious if the
formula ϕ< defining the order has no parameters. If it uses parameters, then
it may define, for each structure A, a family of ordered expansions (A, <).
But these expansions can be compared by use of the lexicographic order
of their encodings. As L is closed under first-order operations, the minimal
expansion with respect to this lexicographical order is L-definable, which
gives an L-definable canonization.

Note, however, that there exist definable canonizations even in cases
where no order is definable. Consider for instance the class of finite directed
paths Pn (for n ∈ N), and take their ‘double graphs’ (see Section 3.2.5),
i.e. the graphs 2Pn = (V,E), where V = {0, . . . , n − 1} × {0, 1} and
E = {〈(m, i), (m+1, j)〉 : 0 ≤ m < n−1, i, j ∈ {0, 1}}. On this class, no order
is definable in any logic and with any finite number of parameters (to see this
use Exercise 3.5.4). However, the class admits DTC-definable canonization.

We shall explain the construction, which is uniform for all n, informally.
The obvious equivalence relation on 2Pn, where (m, i) ∼ (m′, j) iff m = m′,
is first-order definable, and so Pn is interpretable in 2Pn. Further, the nodes
0 and n − 1 are definable in Pn, and so (Cn, 0), the directed n-cycle with
a distinguished point, is interpretable in 2Pn as well. It therefore suffices to
show that an ordered copy of 2Pn is interpretable in (Cn, 0). We represent
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nodes of 2Pn by edges and inverse edges of Cn: the node (m, 0) is represented
in Cn by the pair (m,m+ 1) and the node (m, 1) by the pair (m+ 1,m). The
order on these pairs is

(0, 1) < (1, 0) < (1, 2) < (2, 1) < · · · < (n− 2, n− 1) < (n− 1, n− 2).

The domain formula for the interpretation (of 2Pn in Cn) is
δ(x, y) := Exy∨Eyz. It is not difficult to see that the edge relation and the lin-
ear order are definable using DTC operators. The details are left to the reader.

A simple but interesting example of definable canonization is tree
canonization via fixed-point logic with counting.

Proposition 3.5.12. The class of (directed) trees admits (IFP + C)-definable
canonization.

Proof. The interpretation I that we construct maps a tree T = (V,E) (with
n nodes) to an ordered tree I(T ) = ({1, . . . , n}, E′, <), where < is the natural
order. That is, the interpretation is one-dimensional, maps nodes to numbers,
and is defined by the formulae δ(μ) := ∃ν(ν < μ), ϕ<(μ, ν) := μ < ν, and a
formula ϕE′(μ, ν) that we do not explicitly construct.

The construction of E′ is based on an inductively defined ternary
relation F ⊆ V × {1, . . . , n}2 that encodes the sequence of binary relations
Fv := {(i, j) : (v, i, j) ∈ F}. For each node v of T , let Tv denote the subtree of
T with root v, and let Sv be the graph ({1, . . . , |Tv|}, Fv). The construction
will ensure that Sv is isomorphic to Tv.

If v is a leaf, let Fv = ∅. Suppose now that v has children v1, . . . , vm, and
that the graphs Sv1 , . . . ,Svm have already been constructed. To define Sv, we
compute the code words wi = code(Svi , <) (where < is the natural order)
and arrange them in lexicographic order. Now let Sv be the graph with nodes
1, . . . , |Tv|, obtained by first taking a copy of the Svi with the smallest code
word, then taking a copy of the second, and so on, and finally adding another
node that is connected to the roots of the copies of the Svi . Obviously, Sv
determines Fv, and Sv ∼= Tv.

It is clear that the inductive construction of F can be done via an (IFP
+ C)-formula ψF (x, μ, ν). Now take ϕE′(μ, ν) := ∃xψF (x, μ, ν). �

Theorem 3.5.13. Let D be a domain of (finite) structures, and let L be a
logic that captures PTIME on D<. If D admits L-definable canonization,
then L captures PTIME on D also.

Proof. Let K ∈ D(τ) be a model class tht is decidable in polynomial time,
and let ψ ∈ L(τ ∪ {<}) be a formula defining K< inside D<(τ). Further, let
I be an L[τ, τ ∪ {<}]-interpretation that defines a canonization on D(τ). By
the Interpretation Lemma,

A |= ψI ⇐⇒ I(A) |= ψ ⇐⇒ I(A) ∈ K< ⇐⇒ A ∈ K.

Hence L captures PTIME on D. �
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This result is important because it has been shown, in particular in
the work of Grohe [58–60], that a number of interesting domains admit
canonization via fixed-point logic with counting (IFP + C). Among these are

(1) the domain of finite (labelled) trees (see Proposition 3.5.12);
(2) the class of planar graphs [58] and, more generally, any domain of

structures, whose Gaifman graphs are embeddable in a fixed surface [59];
(3) any domain of structures of bounded tree width [60].

Corollary 3.5.14. (IFP + C) captures PTIME on any of these domains.

Further, the results extend to domains that can be reduced to any of
the domains mentioned above by simple definable operations such as adding
or deleting a vertex or edge. An example is that of nearly planar (or apex)
graphs, which become planar when one vertex is removed.

3.5.3 Capturing PTIME up to Bisimulation

In mathematics, we consider isomorphic structures as identical. Indeed,
it almost goes without saying that relevant mathematical notions do not
distinguish between isomorphic objects. As classical algorithmic devices
work on ordered representations of structures rather than the structures
themselves, our capturing results rely on an ability to reason about canonical
ordered representations of isomorphism classes of finite structures.

However, in many application domains of logic, structures are distin-
guished only up to equivalences coarser than isomorphism. Perhaps the
best-known example is the modelling of the computational behaviour of
(concurrent) programs by transition systems. The meaning of a program
is usually not captured by a unique transition system. Rather, transition
systems are distinguished only up to appropriate notions of behavioural
equivalence, the most important of these being bisimulation.

In such a context, the idea of a logic capturing PTIME gets a new twist.
One would like to express in a logic precisely those properties of structures
that are

(1) decidable in polynomial time, and
(2) invariant under the notion of equivalence being studied.

Let us look at one specific problem in this context, the problem of
bisimulation-invariant properties of transition systems.

Definition 3.5.15. Let G = (V, (Ea)a∈A, (Pb)b∈B) and G′ =
(V ′, (E′

a)a∈A, (P ′
b)b∈B) be two transition systems of the same vocabu-

lary. A bisimulation between G and G′ is a non-empty relation Z ⊆ V ×V ′,
respecting the Pb in the sense that v ∈ Pb iff v′ ∈ P ′

b, for all b ∈ B and
(v, v′) ∈ Z, and satisfying the following back and forth conditions.
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Forth. for all (v, v′) ∈ Z, a ∈ A and every w such that (v, w) ∈ Ea, there
exists a w′ such that (v′, w′) ∈ E′

a and (w,w′) ∈ Z.
Back. for all (v, v′) ∈ Z, a ∈ A and every w′ such that (v′, w′) ∈ E′

a, there
exists a w such that (v, w) ∈ Ea and (w,w′) ∈ Z.

A rooted transition system is a pair (G, u), where G is a transition
system G and u is a node of G. Two rooted transition systems (G, u) and
(G′, u′) are bisimilar, denoted by G, u ∼ G′, u′, if there is a bisimulation Z
between G and G′ with (u, u′) ∈ Z.

Exercise 3.5.16 Bisimulation is a greatest fixed point. Prove that two nodes
u, u′ of a transition system G are bisimilar, i.e. (G, u) ∼ (G, u′) if, and only if,

G |= [gfpRxy .
∧

b∈B
Pbx↔ Pby∧

∧

a∈A
(∀x′ . Eaxx′)(∃y′ . Eayy′)Rx′y′∧

∧

a∈A
(∀y′ . Eayy′)(∃x′ . Eaxx′)Rx′y′](u, u′).

A class S of rooted transition systems is invariant under bisimulation
if, whenever (G, u) ∈ S and (G, u) ∼ (G′, u′), then also (G′, u′) ∈ S. We
say that a class S of finite rooted transition systems is in bisimulation-
invariant PTIME if it is invariant under bisimulation, and if there exists
a polynomial-time algorithm deciding whether a given pair (G, u) belongs to
S. A logic L is invariant under bisimulation if all L-definable properties of
rooted transition systems are.

Exercise 3.5.17 Prove that ML, the modal μ-calculus Lμ, and the infinitary
modal logic ML∞ are invariant under bisimulation.

Clearly, Lμ ⊆ bisimulation-invariant PTIME. However, as pointed out in
Section 3.3.3, Lμ is far too weak to capture this class, mainly because it is
essentially a monadic logic. Instead, we have to consider a multidimensional
variant Lωμ of Lμ.

But before we define this logic, we should explain the main technical
step, which relies on definable canonization, but of course with respect to
bisimulation rather than isomorphism. For simplicity of notation, we consider
only transition systems with a single transition relation E. The extension to
the case of several transition relations Ea is completely straightforward.

With a rooted transition system G = (V,E, (Pb)b∈B), u, we associate a
new transition system

G∼
u := (V ∼

u , E∼, (P∼
b )b∈B),

where V ∼
u is the set of all ∼-equivalence classes [v] of nodes v ∈ V that are

reachable from u. More formally, let [v] denote the bisimulation equivalence
class of a node v ∈ V . Then
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V ∼
u := {[v] : there is a path in G from u to v}

P∼
b := {[v] ∈ V ∼

u : v ∈ Pb}
E∼ := {([v], [w]) : (v, w) ∈ E}.

As shown in the following exercise, the pair G∼
u , [u] is, up to isomorphism,

a canonical representant of the bisimulation equivalence class of G, u.

Exercise 3.5.18 Prove that (1) (G, u) ∼ (G∼
u , [u]), and (2) if (G, u) ∼ (H, v),

then (G∼
u , [u]) ∼= (H∼

v , [v]).

It follows that a class S of rooted transition systems is bisimulation-
invariant if and only if S = {(G, u) : (G∼

u , [u]) ∈ S}. Let CR∼ be the domain
of canonical representants of finite transition systems, i.e.

CR∼ := {(G, u) : (G∼
u , [u]) ∼= (G, u)}.

Proposition 3.5.19. CR∼ admits LFP-definable linear orderings.

Proof. We show that for every vocabulary τ = {E} ∪ {Pb : b ∈ B}, there
exists a formula ψ(x, y) ∈ LFP(τ) which defines a linear order on every
transition system in CR∼(τ).

Recall that bisimulation equivalence on a transition system is a greatest
fixed point. Its complement, bisimulation inequivalence, is a least fixed point,
which is the limit of an increasing sequence �∼i defined as follows: u �∼0 v if u
and v do not have the same atomic type, i.e. if there exists some b such that
one of the nodes u, v has the property Pb and the other does not. Further,
u �∼i+1 v if the sets of ∼i-classes that are reachable in one step from u and v
are different. The idea is to refine this inductive process, by defining relations
≺i that order the ∼i-classes. On the transition system itself, these relations
are pre-orders. The inductive limit ≺ of the pre-orders ≺i defines a linear
order of the bisimulation equivalence classes. But in transition systems in
CR∼, bisimulation classes have only one element, so ≺ actually defines a
linear order on the set of nodes.

To make this precise, we choose an order on B and define ≺0 by
enumerating the 2|B| atomic types with respect to the propositions Pb, i.e.

x ≺0 y :=
∨

b∈B

(
¬Pbx ∧ Pby ∧

∧

b′<b

Pb′x↔ Pb′y
)
.

In what follows, x ∼i y can be taken as an abbreviation for
¬(x ≺i y ∨ y ≺i x), and similarly for x ∼ y. We define x ≺i+1 y by the condi-
tion that either x ≺i y, or x ∼i y and the set of ∼i-classes reachable from x is
lexicographically smaller than the set of∼i-classes reachable from y. Note that
this inductive definition of≺ is not monotone, so it cannot be directly captured
by an LFP-formula. However, as we know that LFP ≡ IFP, we can use an IFP-
formula instead. Explicitly, ≺ is defined by [ifpx ≺ y . ψ(≺, x, y)](x, y), where
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ψ(≺, x, y) :=x ≺0 y ∨
(
x ∼ y∧

(∃y′ . Eyy′)
(

(∀x′ . Exx′)x′ �∼ y′∧

(∀z.z ≺ y′)
(
∃x′′(Exx′′ ∧ x′′ ∼ z)↔

∃y′′(Eyy′′ ∧ y′′ ∼ z)
)))

.

�

Exercise 3.5.20 Complete the proof by showing that the formula
[ifpx ≺ y . ψ(≺, x, y)](x, y) indeed defines the order described above.

Corollary 3.5.21. On the domain CR∼, LFP captures PTIME.

In fact, this result already suffices to give an abstract capturing result
for bisimulation-invariant PTIME (in the sense of the following section): by
composing the mapping from rooted transition systems to their canonical
representants with LFP queries on these representants, we obtain an abstract
logic with recursive syntax and polynomial-time semantics that describes
precisely the polynomial-time computable, bisimulation-invariant queries on
rooted transition systems.

In many situations (such as for polynomial time on arbitrary finite struc-
tures), we would actually be quite happy with such an abstract capturing
result. However, in the bisimulation-invariant scenario we can do better and
capture PTIME in terms of a natural logic, the multidimensional μ-calculus
Lωμ .

Definition 3.5.22. The syntax of the k-dimensional μ-calculus Lkμ (for
transition systems G = (V,E, (Pb)b∈B)) is the same as the syntax of the
usual μ-calculus Lμ with modal operators 〈i〉, [i] for a ∈ A, i = 1, . . . , k, and
〈σ〉, [σ] for every substitution σ : {1, . . . , k} → {1, . . . , k}. Let S(k) be the set
of all these substitutions.

The semantics is different, however. A formula ψ of Lkμ is interpreted on a
transition system G = (V,E, (Pb)b∈B) at node v by evaluating it as a formula
of Lμ on the modified transition system

Gk = (V k, (Ei)1≤i≤k, (Eσ)σ∈S(k), (Pb,i)b∈B,1≤i≤k)

at node v := (v, v, . . . , v). Here V k = V × · · · × V and

Ei := {(v, w) ∈ V k × V k : (vi, wi) ∈ E and vj = wj for j �= i}
Eσ := {(v, w) ∈ V k × V k : wi = vσ(i) for all i}
Pb,i := {v ∈ V k : vi ∈ Pb}

That is, G, v |=Lkμ
ψ iff Gk, (v, . . . , v) |=Lμ ψ. The multidimensional

μ-calculus is Lωμ =
⋃
k<ω L

k
μ.
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Remark. Instead of evaluating a formula ψ ∈ Lkμ at single nodes v of G, we
can also evaluate it at k-tuples of nodes: G, v |=Lkμ

ψ iff Gk, v |=Lμ ψ.

Example 3.5.23. Bisimulation is definable in L2
μ (in the sense of the remark

just made). Let

ψ∼ := νX .
(∧

b∈B
(Pb,1 ↔ Pb,2) ∧ [1]〈2〉X ∧ [2]〈1〉X

)
.

For every transition system G, we have that G, v1, v2 |= ψ∼ if, and only if, v1

and v2 are bisimilar in G. Further, we have that

G, v |= μY . 〈2〉(ψ∼ ∨ 〈2〉Y )

if, and only if, there exists in G a point w that is reachable from v (by a path
of length ≥ 1) and bisimilar to v.

Exercise 3.5.24 Prove that Lωμ is invariant under bisimulation. Further,
show that Lωμ can be embedded in LFP.

This exercise establishes the easy direction of the desired result: Lωμ ⊆
bisimulation-invariant PTIME. For the converse, it suffices to show that
LFP and Lωμ are equivalent on the domain CR∼. Let S be a class of rooted
transition systems in bisimulation-invariant PTIME. For any (G, u), we have
that (G, u) ∈ S if its canonical representant (G∼

u , [u]) ∈ S. If LFP and Lωμ are
equivalent on CR∼, then there exists a formula ψ ∈ Lωμ such that G∼

u , [u] |= ψ
iff (G∼

u , [u]) ∈ S. By the bisimulation invariance of ψ, it follows that G, u |= ψ
iff (G, u) ∈ S.

Proposition 3.5.25. On the domain CR∼, LFP ≤ Lωμ. More precisely, for
each formula ψ(x1, . . . , xk+1) ∈ LFP of width ≤ k + 1, there exists a formula
ψ∗ ∈ Lk+1

μ such that for each (G, u) ∈ CR∼, we have that G |= ψ(u, v) iff
G, u, v |= ψ∗.

Note that although, ultimately, we are interested only in formulae ψ(x)
with just one free variable, we need more general formulae, and evaluation
of Lkμ-formulae over k-tuples of nodes, for the inductive treatment. In all
formulae, we shall have at least x1 as a free variable, and we always interpret
x1 as u (the root of the transition system). We remark that, by an obvious
modification of the formula given in Exercise 3.5.23, we can express in Lkμ
the assertion that xi ∼ xj for any i, j.

Atomic formulae are translated from LFP to Lωμ according to

(xi = xj)∗ := xi ∼ xj

(Pbxi)∗ := Pb,ix

(Exixj)∗ := 〈i〉xi ∼ xj

(Xxσ(1) · · ·xσ(r))∗ := 〈σ〉X.
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Boolean connectives are treated in the obvious way, and quantifiers are
translated by use of fixed points. To find a witness xj satisfying a formula
ψ, we start at u (i.e. set xj = x1), and search along transitions (i.e. use the
μ-expression for reachability). That is, let j/1 be the substitution that maps
j to 1 and fixes the other indices, and translate ∃xjψ(x) into

〈j/1〉μY . ψ∗ ∨ 〈j〉Y.

Finally, fixed points are first brought into normal form so that variables appear
in the right order, and then they are translated literally, i.e. [lfpXx . ψ](x)
translates into μX .ψ∗.

The proof that the translation has the desired property is a straightfor-
ward induction, which we leave as an exercise (see [90] for details). Altogether
we have established the following result.

Theorem 3.5.26 (Otto). The multidimensional μ-calculus captures
bisimulation-invariant PTIME.

Otto has also established capturing results with respect to other equiv-
alences. For finite structures A,B, we say that A ≡k B if no first-order
sentence of width k can distinguish between A and B. Similarly, A ≡Ck B if A
and B are indistinguishable by first-order sentences of width k with counting
quantifiers of the form ∃≥ix, for any i ∈ N.

Theorem 3.5.27 (Otto). There exist logics that effectively capture ≡2-
invariant PTIME and ≡C2 -invariant PTIME on the class of all finite
structures.

For details, see [89].

3.5.4 Is There a Logic for PTIME?

To discuss the problem of whether PTIME can be captured on the domain
of all finite structures, we need to make precise the notion of a logic, and
to refine the notion of a logic capturing a complexity class, so as to exclude
pathological examples such the following, which is due to Gurevich [61].

Example 3.5.28. Let the syntax of our ‘logic’ consist of all pairs (M,k),
where M is a Turing machine, and k a natural number. A finite τ -structure
A is a model of (M,k) if there exists a model class K ⊆ Fin(τ) such that
A ∈ K, and M accepts an encoding code(B, <) of a finite τ -structure B in
time |B|k if, and only if, B ∈ K. Note that this ‘logic’ captures PTIME on
finite structures. But the example is pathological, not mainly because of its
unusual format, but because its semantics is not effective: it is undecidable
whether a Turing machine accepts an isomorphism-closed class of structures.

Another example of this kind is order-invariant LFP. The τ -sentences of
this logic are the LFP-sentences of vocabulary τ ∪{<} such that, for all finite
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τ -structures A and all linear orders <, <′ on A, we have that (A, <) |= ψ
if and only if (A, <′) |= ψ. This defines the syntax. The semantics is the
obvious one: a structure A is a model of ψ if, and only if, (A, <) |= ψ for
some, and hence all, linear orders on A. This ‘logic’ also captures PTIME,
but again it has an undesirable feature: it is undecidable whether a given
sentence ψ ∈ LFP is order-invariant (compare Exercise 3.1.12), so the ‘logic’
does not have an effective syntax.

We start by defining a general notion of a logic on finite structures by
imposing two requirements: an effective syntax and an isomorphism-invariant
semantics.

Definition 3.5.29. A logic on a domain D of finite structures is a pair
(L, |=), where L is a function that assigns to each vocabulary τ a decidable
set L(τ) (whose elements are called τ -sentences), and |= is a binary relation
between sentences and finite structures, so that for each sentence ψ ∈ L(τ),
the class {A ∈ D(τ) : A |= ψ} is closed under isomorphism.

Recall that, by Definition 3.2.10, a logic captures PTIME on a domain D
if every polynomial-time decidable model class in D is definable in that logic,
and if, for every sentence of the logic, the model-checking problem on D can
be solved in polynomial time. To exclude pathological examples such the
first one above, we impose in addition the condition that for each sentence,
a polynomial-time model-checking algorithm can be effectively constructed.

Definition 3.5.30. A logic (L, |=) effectively captures PTIME on a
domain D of finite structures if it captures PTIME in the sense of Defini-
tion 3.2.10 and, moreover, there exists a computable function, which associates
with every sentence ψ ∈ L(τ) an algorithm M and a polynomial p, such that
M decides {A ∈ D(τ) : A |= ψ} in time p(n). We simply say that (L, |=)
effectively captures PTIME if it does so on the class of all finite structures.

This definition can be modified in the obvious way to other complexity
classes. All capturing results that we have proved so far are effective in this
sense.

Exercise 3.5.31 A complexity class C is recursively indexable on a domain
D if there is a recursive index set I, a computable function f mapping every
i ∈ I to (the code of) a Turing machine Mi, and an appropriate resource
bound (e.g. a polynomial bounding the running time of Mi) such that:

(1) The class Ki of all structures from D accepted by Mi is in C, and,
moreover, Mi together with the given resource bound witnesses the
membership of Ki in the complexity class C.

(2) For each model class K ∈ C on the domain D, there is an i ∈ I such that
Mi decides K.
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Prove that there is a logic that effectively captures C on the domain D if,
and only if, C is recursively indexable on D.

The above definition of a logic may seem too abstract for practical
purposes. However, it is justified by the equivalence with recursive indexings,
as described in the exercise above, and by a result of Dawar [32], which shows
that if there is any logic that effectively captures PTIME, then there also exists
a natural one. More precisely, Dawar proved that, from any logic effectively
capturing PTIME, one could extract a model class K that is complete for
PTIME under first-order reductions. As a consequence, PTIME would also be
effectively captured by the logic FO[QωK], which adjoins to FO the vectorized
Lindstöm quantifiers associated with K (see [32, 38] for more information).

Exercise 3.5.32 Many finite-model theorists conjecture that there is no logic
that effectively captures PTIME on finite structures. If you are the first to
prove this, you may win one million dollars. Why?

3.6 Algorithmic Model Theory

3.6.1 Beyond Finite Structures

For a long time, descriptive complexity theory has been concerned almost
exclusively with finite structures. Although important problems remain open,
the relationship between definability and complexity on finite structures is
now fairly well understood, and there are interesting connections to fields such
as databases, knowledge representation, and computer-aided verification.

However, for many applications, the strict limitation to finite structures
is too restrictive. In most of the fields mentioned above, there have been
considerable efforts to extend the relevant methodology from finite structures
to suitable domains of infinite ones. In particular, this is the case for
databases and computer-aided verification where infinite structures (like
constraint databases or transition systems with infinite state spaces) are of
increasing importance.

Finite model theory should therefore be generalized to a more compre-
hensive algorithmic model theory that extends the research programme, the
general approach, and the methods of finite model theory to interesting
domains of infinite structures. From a more general theoretical point of view,
one may ask what domains of infinite structures are suitable for such an
extension. More specifically, one may ask what conditions must be satisfied
by a domain D of structures that are not necessarily finite such that the
approach and methods of finite model theory make sense. There are two
obvious and fundamental conditions:

Finite representations. Every structure A ∈ D should be representable in a
finite way (e.g. by a binary string, an algorithm, a collection of automata,
an axiomatization in some logic, an interpretation, . . . ).
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Effective semantics. For the relevant logics (e.g. first-order logic), the model-
checking problem on D should be decidable. That is, given a sentence
ψ ∈ L and a representation of a structure A ∈ D, it should be decidable
whether A |= ψ.

These are just minimal requirements, which may need to be refined
according to the context and the questions to be considered. We may, for
instance, also require the following:

Closure. For every structure A ∈ D and every formula ψ(x), the expansion
(A, ψA) of A with the relation defined by ψ, should as well be contained
in D.

Effective query evaluation. Suppose that we have fixed a way of representing
structures. Given a representation of A ∈ D and a formula ψ(x), we
should be able to compute a representation of ψA (or of the expanded
structure (A, ψA)).

Note that, contrary to the case of finite structures, query evaluation does not
necessarily reduce to model checking. Further, instead of just effectiveness
of these tasks, it may be required that they can be performed within some
complexity bounds.

3.6.2 Finitely Presentable Structures

We briefly survey here some domains of infinite but finitely presentable
structures which may be relevant to algorithmic model theory. We shall then
discuss in a more detailed way metafinite structures, for which descriptive
complexity issues have already been studied quite intensively.

Recursive structures are countable structures whose functions and
relations are computable and therefore finitely presentable. They have been
studied quite intensively in model theory since the 1960s (see e.g. [6, 42]).
Although recursive model theory is very different from finite model theory,
there have been some papers studying classical issues of finite model theory
on recursive structures and recursive databases [50, 64, 65, 94]. However,
for most applications, the domain of recursive structures is far too large. In
general, only quantifier-free formulae admit effective evaluation algorithms.

Constraint databases provide a database model that admits infinite
relations that are finitely presented by quantifier-free formulae (constraints)
over some fixed background structure. For example, to store geometrical
data, it is useful not just to have a finite set as the universe of the database,
but to include all real numbers ‘in the background’. Also, the presence
of interpreted functions on the real numbers, such as addition and multi-
plication, is desirable. The constraint database framework introduced by
Kanellakis, Kuper, and Revesz [74] meets both requirements. Formally, a
constraint database consists of a context structure A, such as (R, <,+, ·), and
a set {ϕ1, . . . , ϕm} of quantifier-free formulae defining the database relations.
Constraint databases are treated in detail in [81] and in Chap. 5 of this book.
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Automatic structures are structures whose functions and relations
are represented by finite automata. Informally, a relational structure
A = (A,R1, . . . , Rm) is automatic if we can find a regular language Lδ ⊆ Σ∗

(which provides names for the elements of A) and a function ν : Lδ → A
mapping every word w ∈ Lδ to the element of A that it represents. The
function ν must be surjective (every element of A must be named) but need
not be injective (elements can have more than one name). In addition, it must
be recognizable by finite automata (reading their input words synchronously)
whether two words in Lδ name the same elements, and, for each relation Ri
of A, whether a given tuple of words in Lδ names a tuple in Ri.

Example 3.6.1. (1) All finite structures are automatic.
(2) Some important examples of automatic structures are Presburger

arithmetic (N,+), and its expansions Np := (N,+, |p) by the relation x |p y
which says that x is a power of p dividing y. Using p-ary encodings (starting
with the least significant digit), it is not difficult to construct automata
recognizing equality, addition, and |p.

(3) For p ∈ N, let Tree(p) := ({0, . . . , p − 1}∗, (σi)i<p, <, el), where
σi(x) := xi, x < y means that xz = y for some z, and el(x, y) means that x
and y have equal length. Obviously, these structures are automatic as well.

Automatic structures provide a vast playground for finite-model theorists,
with many examples of high relevance to computer science. There are also
interesting connections to computational group theory, where automatic
groups have already been studied quite intensively [41, 44]. The general
notion of structures presentable by automata was proposed in [75], and their
theory has been developed in [16, 18, 19, 92].

The notion of an automatic structure can be modified and generalized in
many directions. By using automata over infinite words, we obtain the notion
of ω-automatic structures (which, unlike automatic structures, may have
uncountable cardinality).

Example 3.6.2. (1) All automatic structures are ω-automatic.
(2) The additive group of reals, (R,+), and indeed the expanded structure

Rp := (R,+,≤, |p, 1) are ω-automatic, where

x |p y iff x = pn and y = kx for some n, k ∈ Z.

(3) The tree structures Tree(p) can be extended in a natu-
ral way to the (uncountable) ω-automatic structures Treeω(p) =
({0, . . . , p− 1}≤ω, (σi)i<p, , el).

Unlike the class of recursive structures, automatic structures and ω-
automatic structures admit effective (in fact, automatic) evaluation of all
first-order queries and possess many other pleasant algorithmic properties.

Theorem 3.6.3. The model checking problems for first-order logic on the
domains of automatic or ω-automatic structures are decidable.
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There are a number of extensions of this result, for instance to
the extension of first-order logic by the quantifier ‘there exist infinitely
many’ [19]. There also are model-theoretic characterizations of automatic
and ω-automatic structures, in terms of interpretations into appropriate
expansions of Presburger arithmetic, trees, or the additive group of reals (see
Examples 3.6.1 and 3.6.2). We write A ≤FO B to denote that there exists a
first-order interpretation of A in B. Note that the domains of automatic and
ω-automatic structures are closed under fist-order interpretations.

Theorem 3.6.4 (Blumensath and Grädel). (1) For every structure A,
the following are equivalent:

(i) A is automatic.
(ii) A ≤FO Np for some (and hence all) p ≥ 2.
(iii) A ≤FO Tree(p) for some (and hence all) p ≥ 2.

(2) For every structure A, the following are equivalent:

(i) A is ω-automatic.
(ii) A ≤FO Rp for some (and hence all) p ≥ 2.
(iii) A ≤FO Treeω(p) for some (and hence all) p ≥ 2.

For a proof, see [19] There are similar characterizations for tree-
automatic structures [16]. For further results on automatic structures,
see [10, 16, 18, 19, 75–78, 92].

The model-theoretic characterizations of automatic and ω-automatic
structures in terms of interpretability suggest a general way to obtain other
domains of infinite structures that may be interesting for algorithmic model
theory: fix a structure A with ‘nice’ (algorithmic and/or model-theoretic)
properties and an appropriate notion of interpretation, and consider the
class of all structures that are interpretable in A. Obviously, each structure
in this class is finitely presentable (by an interpretation). Further, many
‘nice’ properties are preserved by interpretations, and so every structure in
the class inherits them from A. In particular, every class of queries that
is effective on A and closed under first-order operations is effective on the
closure of A under first-order interpretations. This approach is also relevant
to the domain of structures that we discuss next.

Tree-interpretable structures are structures that are interpretable in
the infinite binary tree T 2 = ({0, 1}∗, σ0, σ1) via a (one-dimensional) MSO-
interpretation. By Rabin’s Theorem, monadic second-order formulae can
be effectively evaluated on T 2. Since MSO is closed under one-dimensional
interpretations, the Interpretation Lemma implies that tree-interpretable
structures admit effective evaluation for MSO. Tree-interpretable structures
generalize various notions of infinite graphs that have been studied in
logic, automata theory and, verification. Some examples are context-free
graphs [87, 88], which are the configuration graphs of pushdown automata,
HR-equational and VR-equational graphs [27], which are defined via
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certain graph grammars, and prefix-recognizable graphs [25], which can
for instance be defined as graphs of the form (V, (Ea)a∈A), where V is a reg-
ular language and each edge relation Ea is a finite union of sets X(Y × Z) =
{(xy, xz) : x ∈ X, y ∈ Y, z ∈ Z}, for regular languages X,Y, Z. In fact, some
of these classes coincide with the class of tree-interpretable graphs (see [17]).

Theorem 3.6.5. For any graph G = (V, (Ea)a∈A), the following are
equivalent:

(i) G is tree-interpretable.
(ii) G is VR-equational.
(iii) G is prefix-recognizable.
(iv) G is the restriction to a regular set of the configuration graph of a

pushdown automaton with ε-transitions.

On the other hand, the classes of context-free graphs and of HR-equational
graphs are strictly contained in the class of tree-interpretable graphs.

Exercise 3.6.6 Prove that every tree-interpretable structure is automatic. Is
the converse also true?

Tree-Constructible Structures: the Caucal Hierarchy

The question arises of whether there are even more powerful domains than the
tree-interpretable structures on which monadic second-order logic is effective.
An interesting way to obtain such domains is to use tree constructions that
associate with any structure a kind of tree unravelling. A simple variant is
the unfolding of a labelled graph G from a given node v to the tree T (G, v).
Courcelle and Walukiewicz [28, 29] have shown that the MSO-theory of
T (G, v) can be effectively computed from the MSO-theory of (G, v). A more
general operation, applicable to relational structures of any kind, has been
invented by Muchnik. Given a relational structure A = (A,R1, . . . , Rm),
let its iteration A∗ = (A∗, R∗

1, . . . , R
∗
m, suc, clone) be the structure with

universe A∗, relations R∗
i = {(wa1, . . . , war) : w ∈ A∗, (a1, . . . , ar) ∈ Ri},

the successor relation suc = {(w,wa) : w ∈ A∗, a ∈ A}, and the predicate
clone consisting of all elements of the form waa. It is not difficult to see
that unfoldings of graphs are first-order interpretable in their iterations.
Muchnik’s Theorem states that the monadic theory of A∗ is decidable if the
monadic theory of A is so (for proofs, see [11, 101]). We define the domain
of tree-constructible structures to be the closure of the domain of finite
structures under (one-dimensional) MSO-interpretations and iterations. By
Muchnik’s Theorem, and since effective MSO model checking is preserved
under interpretations, the tree constructible structures are finitely presentable
and admit effective evaluation of MSO-formulae.

The tree-constructible graphs form the Caucal hierarchy, which was
defined in [26] in a slighly different way. The definition is easily extended to
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arbitrary structures: let C0 be the class of finite structures, and let Cn+1 be
the class of structures that are interpretable in the iteration A∗ of a structure
A ∈ Cn. There are a number of different, but equivalent, ways to define the
levels of the Caucal hierarchy. For instance, one can use the inverse rational
mappings given in [25] rather than monadic interpretations, and simple
unfoldings rather than iterations without changing the hierarchy [24]. Equiv-
alently, the hierarchy can be defined via higher-order pushdown automata.
It is known that the Caucal hierarchy is strict, and that it does not exhaust
the class of all structures with a decidable MSO-theory. We refer to [24, 98]
for details and further information.

3.6.3 Metafinite Structures.

The class of infinite structures for which descriptive complexity theory has
been studied most intensively is the class of the metafinite structures, pro-
posed by Grädel and Gurevich [48], and studied also in [30, 49, 53, 84]. These
structures are somewhat reminiscent of the two-sorted structures that we
used to define fixed-point logic with counting, (IFP + C). There, the second
sort was a finite linear order ({0, . . . , n}, <). Metafinite structures are similar
two-sorted structures, with the essential differences that (1) the numerical sort
need not be finite, (2) the structures may contain functions from the first to
the second sort, and (3) operations more general than counting are considered.

Definition 3.6.7. A (simple) metafinite structure is a triple
D = (A,R,W ) consisting of the following:

(i) A finite structure A, called the primary part of D.
(ii) A finite or infinite structure R, called the secondary (or numerical) part

of D. We always assume that R contains two distinguished elements 0
and 1 (or true and false).

(iii) A finite set W of functions w : Ak → R.

The vocabulary of D is the triple τ(D) = (τa, τr, τw), where each compo-
nent of τ(D) is the set of relation or function symbols in the corresponding
component of D. (We always consider constants as functions of arity 0.) The
two distinguished elements 0, 1 of R are named by constants of τr.

Example 3.6.8. (R-structures) The descriptive complexity theory over the
real numbers developed by Grädel and Meer [53] (see Sect. 3.6.5) is based
on R-structures, which are simple metafinite structure with a secondary part
R = (R,+,−, ·, /,≤, (cr)r∈R). It is convenient to include subtraction and
division as primitive operations and assume that every element r ∈ R is
named by a constant cr, so that any rational function g : Rk → R (i.e. any
quotient of two polynomials) can be written as a term.

There are many variations of metafinite structures. An important one is
metafinite structures with multiset operations. Any function f : A→ R
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defines a multiset mult(f) = {{f(a) : a ∈ A}} over R (where the notation
{{. . .}} indicates that we may have multiple occurrences of the same element).
For any set R, let fm(R) denote the class of all finite multisets over R. In some
of the metafinite structures that we consider, the secondary part R is not just
a (first-order) structure in the usual sense, but instead it comes with a collec-
tion of multiset operations Γ : fm(R) → R, mapping finite multisets over R to
elements of R. Some natural examples on, say, the real numbers are addition,
multiplication, counting, mean, maximum, and minimum. The use of multiset
operations will become clearer when we introduce logics for metafinite struc-
tures. Let us just remark that multiset operations are a natural way to make
precise the notion of aggregates in database query languages such as SQL.

Example 3.6.9. (Arithmetical structures). Of particular interest to us are
metafinite structures, whose secondary part is a structure N over the natural
numbers such that

• N includes at least the constants 0, 1, the functions +, · , the ordering rela-
tion <, and the multiset operations max,min,

∑
(sum), and

∏
(product).

• All functions, relations, and multiset operations of N can be evaluated in
polynomial time.

We call metafinite structures of this kind arithmetical structures. A
simple arithmetical structure is obtained from an arithmetical structure by
omitting the multiset operations.

By itself, the notion of metafinite structures contains nothing revolution-
ary: they are just a special kind of two-sorted structures. The interesting
feature of metafinite model theory is not just the structures themselves, but
the logics, which access the primary and the secondary part in different ways
and are designed so that the approach and methods of finite model theory
remain meaningful and applicable. An important feature of these logics is
that they contain, besides formulae and terms in the usual sense, a calculus
of weight terms from the primary to the secondary part.

Definition 3.6.10. Let L be any of the logics for finite structures, such as
FO, LFP, . . . as described in the previous sections, and let τ = (τa, τr, τw) be a
vocabulary for metafinite structures (where τr may or may not have names for
multiset operations). The appropriate modification of L for reasoning about
metafinite structures D = (A,R,W ) of vocabulary τ is defined as follows. We
fix a countable set V = {x0, x1, . . .} of variables ranging over elements of the
primary part A only. The point terms (defining functions f : Ak → A), the
weight terms (defining functions w : Ak → R), and the formulae (defining
relations R ⊆ Ak) of L[τ ] are defined inductively as follows:

(1) Point terms are defined in the usual way, by closing the set of variables
V under application of function symbols from τa.
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(2) Weight terms can be built by applying weight function symbols from
τw to point terms, and function symbols from τr to previously defined
weight terms. Note that there are no variables ranging over R.

(3) Atomic formulae are equalities of point terms, equalities of weight terms,
expressions Pt1 · · · tr containing relations symbols P ∈ τa and point
terms t1, . . . , tr, or expressions Qf1 · · · fr containing predicates Q ∈ τr
and weight terms f1, . . . , fr.

(4) All the rules of L for building formulae (via propositional connectives,
quantifiers, and other operators) may be applied, taking into account
the condition that only variables from V may be used.

(5) In addition, we have the characteristic function rule: if ϕ(x) is a
formula, then χ[ϕ](x) is a weight term.

(6) If τw contains multiset operations, these provide additional means
for building new weight terms. Let F (x, y) be a weight term, ϕ(x, y)
a formula (both with free variables among x, y), and Γ a multiset
operation. The expression

Γx(F (x, y) : ϕ)

is then a weight term with free variables y. (If ϕ = true, we simplify this
notation to ΓxF (x, y).)

The semantics for (1)–(4) is the obvious one. A term χ[ϕ](x) evaluates
to 1 if ϕ(x) is true, and to 0 otherwise. Finally, let G(y) be a weight term
Γx(F (x, y) : ϕ) formed by application of a multiset operation. The weight
term F (x, y) defines, on a metafinite structure D = (A,R,W ), a function
FD : Ak+m → R. For any fixed tuple b, the collection of values FD(a, b), as
a ranges over those tuples such that ϕ(a, b) is true, forms a finite multiset

(F : ϕ)D(b) := {{FD(a, b) : a ∈ Ak such that D |= ϕ(a, b)}}.

The interpretation of G(b) on D is obtained by applying Γ to this multiset, i.e.

GD(b) := Γ ((F : ϕ)D(b)).

Example 3.6.11. (Binary representations.) Consider arithmetic structures
with a primary part of the form A = ({0, . . . , n − 1}, <, P ) where P is a
unary relation. P is interpreted as a bit sequence u0 · · ·un−1 representing
the natural number

∑n−1
i=0 ui2i (where ui = 1 iff A |= P (i)). The number

represented by P is definable by the term
∑

x

(
χ[Px]

∏

y

(2 : y < x)
)
.

Example 3.6.12. (Counting elements.) On arithmetic structures, first-order
logic can count. For any formula ϕ(x), there is a weight term #x[ϕ(x)]
counting the number of tuples a such that ϕ(a) is true, namely

#x[ϕ(x)] :=
∑

x

χ[ϕ].
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3.6.4 Metafinite Spectra

Does descriptive complexity theory generalize in a meaningful way from finite
to metafinite structures? To give some evidence that such generalizations
are indeed possible and fruitful, we focus here on generalizations of Fagin’s
Theorem to (1) arithmetical structures, and (2) R-structures (see the
examples given above).

Recall that Fagin’s Theorem says that generalized spectra (or, equiv-
alently, the properties of finite structures that are definable in existential
second-order logic) coincide with the complexity class NP. To discuss possible
translations to metafinite structures, we need to make precise two notions:

• The notion of a metafinite spectrum, i.e. a generalized spectrum of
metafinite structures.

• The notion of complexity (in particular, deterministic and non-
deterministic polynomial time) in the context of metafinite structures.

For a fixed structure R, let Mτ [R] denote the class of metafinite structures
with a secondary part R and vocabulary τ = (τa, τr, τw) (where, of course,
τr is the vocabulary of R). We start with two notions of metafinite spectra.

Definition 3.6.13. A class K ⊆ Mτ [R] is a metafinite spectrum if there
exists a first-order sentence ψ of a vocabulary τ ′ ⊇ τ such that D ∈ K if and
only if there exists an expansion D′ ∈ Mτ ′[R] of D with D′ |= ψ. (Note that
the secondary part is not expanded.) A primary metafinite spectrum is
defined in a similar way, except that only the primary part of the structures is
expanded, and not the set of weight functions. This means that the expanded
structures D′ have the same set of weight functions as D.

These two notions of metafinite spectra correspond to two variants
of existential second-order logic. The more restrictive variant allows
second-order quantification over primary relations only, whereas the general
one allows quantification over weight functions as well. Thus, a primary
metafinite spectrum is the class of structures D ∈ Mτ [R] which are models
of an existential second-order sentence of the form ∃R1 · · · ∃Rmψ, where
R1, . . . , Rm are relation variables over the primary part, and ψ is first-order.
Since relations over the primary part can be replaced by their characteristic
functions, a metafinite spectrum in the more general sense is the class of
models of a sentence ∃F1 · · · ∃Fmψ, where the Fi are function symbols ranging
over weight functions. We shall see that both notions of metafinite spectra
capture (suitable variants of) non-deterministic polynomial-time in certain
contexts, but fail to do so in others.

In general, the notion of complexity for problems on metafinite strucures
depends on the computation model used and on the cost (or size) associated
with the elements of the secondary part. For instance, if the secondary part
consists of natural numbers or binary strings, then a natural notion of cost
is given by the number of bits. On the other hand, below we shall study
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complexity over real numbers with respect to the Blum–Shub–Smale model,
and there every element of R will be treated as a basic entity of cost one.

Let ‖r‖ denote the cost of r. For a metafinite structure D = (A,R,W ) ∈
Mτ [R], let |D| := |A| and let max D := maxw∈W maxa ‖w(a)‖, the cost of
the maximal weight. Assuming R and τ to be fixed, then ‖D‖, the cost of
representing D, is polynomially bounded in |A| and max D (via a polynomial
that depends only on the vocabulary of D). Since most of the popular com-
plexity classes are invariant under polynomial increase of the relevant input
parameters, it therefore makes sense to measure the complexity in terms of
|D| and max D. For instance, an algorithm on a class of metafinite structures
runs in polynomial time or in logarithmic space if, for every input D, the
computation terminates in at most q(|D|,max D) steps, for some polynomial
q, or uses at most O(log |D|+ log max D) of work space, respectively.

We first discuss arithmetical structures, as described in Example 3.6.9,
assuming that the cost of natural numbers is given by the length of their
binary representations. So the question is whether, or under what cir-
cumstances, NP is captured by the class of metafinite spectra or primary
metafinite spectra. The original proof of Fagin’s Theorem generalizes to the
case of arithmetical structures with weights that are not too large.

Definition 3.6.14. A class K of metafinite structures has small weights if
there exists a k ∈ N such that max D ≤ |D|k for all D ∈ K. As max D stands
for the cost of the largest weight this means that the values of the weights
are bounded by a function 2p(|D|) for some polynomial p.

We obtain the following first generalization of Fagin’s result.

Theorem 3.6.15 (Grädel and Gurevich). Let K ⊆ Mτ [N] be a class of
arithmetical structures with small weights which is closed under isomorphisms.
The following are equivalent:

(i) K is in NP.
(ii) K is a primary generalized spectrum.

Proof. It is obvious that (ii) implies (i). The converse can be reduced to
Fagin’s Theorem as follows. We assume that for every structure D = (A,N,W )
in K, we have that max D ≤ nk, where n = |D| = |A|; further, we suppose
without loss of generality, that an ordering < on A is available (otherwise
we expand the vocabulary with a binary relation < and add a conjunct
β(<) asserting that < is a linear order). We can then identify Ak with the
initial subset {0, . . . , nk − 1} of N, viewed as bit positions of the binary
representations of the weights of D. With every D ∈ K we associate a finite
structure Df by expanding the primary part A as follows: for every weight
function w ∈W of arity j, we add a new relation Pw of arity j + k, where

Pw := {(a, t) : the tth bit of w(a) is 1}.
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Then K is in NP if and only if Kf = {Df : D ∈ K} is an NP-set of finite
structures, and, in fact, we can choose the encodings in such a way that D
and Df are represented by the same binary string. Thus, if K is in NP, then,
by Fagin’s Theorem, Kf is a generalized spectrum, defined by a first-order
sentence ψ.

As in Example 3.6.11, one can construct a first-order sentence α (whose
vocabulary consists of the weight functions w ∈ τw and the corresponding
primary relations Pw) which expresses the assertion that the Pw encode the
weight functions w in the sense defined above. Then ψ ∧ α is a first-order
sentence witnessing that K is a primary metafinite spectrum. �

The above result also holds for arithmetical structures without multiset
operations. However, without the restriction that the weights are small, it
is no longer true that every NP-set is a primary metafinite spectrum. If
we have inputs with huge weights compared with the primary part, then
relations over the primary part cannot code enough information to describe
computations that are bounded by a polynomial in the length of the weights.

It is tempting to use unrestricted metafinite spectra instead. However,
metafinite spectra in the general sense capture a much larger class than NP.

Theorem 3.6.16 (Grädel and Gurevich). On arithmetical structures,
metafinite spectra capture the recursively enumerable sets.

We sketch the proof here. It is not difficult to show that every metafinite
spectrum of arithmetical structures is recursively enumerable. For the
converse, we first note that any tuple a ∈ Nk can be viewed as an arithmetical
structure with an empty primary vocabulary and k nullary weight functions
a1, . . . , ak. Thus an arithmetical relation S ⊆ Nk can be viewed as a
special class of arithmetical structures. We show first that every recursively
enumerable set S ⊆ Nk is a metafinite spectrum. In particular, there exist
undecidable metafinite spectra.

By Matijasevich’s Theorem (see [83]), every recursively enumerable set
S ⊆ Nk is Diophantine, i.e. can be represented as

S = {a ∈ Nk : there exists b1, . . . , bm ∈ N such that Q(a, b) = 0}

for some polynomial Q ∈ Z[x1, . . . , xk, y1, . . . , ym]. Let P, P ′ ∈ N[x, y] such
that Q(x, y) = P (x, y) − P ′(x, y). Thus S is a metafinite spectrum; the
desired first-order sentence uses additional weight functions b1, . . . , bm and
asserts that P (a, b) = P ′(a, b).

This can be extended to any recursively enumerable class of arithmetical
structures, with an arbitrary vocabulary. To see this, we encode structures
D ⊆ Mτ [N] by tuples c(D) ∈ Nk, where k depends only on τ . (In fact, it is
no problem to reduce k to 1.) Similarly to the case of finite structures, an
encoding involves the selection of a linear order on the primary part. In fact,
it is often more convenient to have a ranking of the primary part rather
than just a linear ordering.
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Definition 3.6.17. Suppose that R contains a copy of (N, <). A ranking of a
metafinite structure D = (A,R,W ) is a bijection r : A→ {0, . . . , n− 1} ⊆ R.
A class K ⊆ Mτ [R] is ranked if τ contains a weight function r whose
interpretation on every D ∈ K is a ranking.

The Coding Lemma for arithmetical structures [48] says that for every
vocabulary τ there exists an encoding function that associates with every
ranked arithmetical τ -structure D a tuple code(D) ∈ Nk with the following
properties:

(1) code is definable by first-order terms.
(2) The primary part and the weight functions of D can be reconstructed

from code(D) in polynomial time.
(3) There exists a polynomial p(n,m) such that ci(D) ≤ 2p(|D|,maxD) for

every i ≤ k.

Now let K ⊆Mτ [N] be recursively enumerable. The set

code(K) := {code(D, r) : D ∈ K, r is a ranking of D} ⊆ Nk

is then also recursively enumerable and therefore Diophantine. The desired
first-order sentence ψ uses, besides the symbols of τ , a unary weight function
r and nullary weight functions b1, . . . , bm and expresses the assertions (i) that
r is a ranking and (ii) that Q(code(D, r), b)) = 0 for a suitable polynomial
Q ∈ Z[x1, . . . , xk, y1, . . . , ym] defining code(K).

3.6.5 Descriptive Complexity over the Real Numbers

There are other contexts in which metafinite spectra do indeed capture (a
suitable notion of) non-deterministic polynomial time. An important example
are computations over the real numbers based on the model of Blum, Shub,
and Smale.

Computation over R

In 1989 Blum, Shub, and Smale [15] introduced a model for computations
over the real numbers (and other rings as well), which is now usually called
the BSS machine. The important difference from, say, the Turing model is
that real numbers are treated as basic entities and that arithmetic operations
on the reals are performed in a single step, independently of the magnitude or
complexity of the numbers involved. In particular, the model abstracts from
the problems that in actual computers real numbers have to be approximated
by bit sequences, that the complexity of arithmetic operations depends on
the length of these approximate representations, that rounding errors occur,
and that exact testing for 0 is impossible in practice. Similar notions of
computations over arbitrary fields or rings had been investigated earlier
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in algebraic complexity theory (see [22] for a comprehensive treatment).
A novelty of the approach of Blum, Shub, and Smale is that their model
is uniform (for all input lengths) whereas the ideas explored in algebraic
complexity (such as straight-line programs, arithmetic circuits, and decision
trees) are typically non-uniform. One of the main purposes of the BSS
approach was to create a uniform complexity theory dealing with problems
that have an analytical and topological background, and to show that certain
problems remain hard even if arbitrary reals are treated as basic entities.

Many basic concepts and fundamental results of classical computability
and complexity theory reappear in the BSS model: the existence of universal
machines, the classes PR and NPR (real analogues of P and NP), and the
existence of NPR-complete problems. Of course, these ideas appear in a
different form, with a strong analytical flavour: typical examples of unde-
cidable, recursively enumerable sets are complements of certain Julia sets,
and the first problem that was shown to be NPR-complete is the question of
whether a given multivariate polynomial of degree four has a real root [15].
As in the classical setting, all problems in the class NPR are decidable within
exponential time (but this is not as trivial as in the classical case), and the
PR versus NPR question is one of the major open problems.

However, there also are many differences between classical and real
complexity theory. Just to mention a few, we note that the meaning of space
resources seems to be very different, that certain separation results between
complexity classes can be established (such as NCR � PR and NPR � EXPR)
whose analogues in the classical theory are open, and that some discrete prob-
lems seem to change their complexity behaviour when considered in the BSS
model. For a detailed treatment we refer the interested reader to the book [14].

The BSS Model

Let R∗ :=
⋃
k∈N

Rk, or (almost) equivalently, the set of functions X : N → R
with X(n) = 0 for all but finitely many n. For any X ∈ R∗, we call
|X | := max{n : X(n) �= 0} the length of X . Note that R∗ × R∗ can be
identified with R∗ in a natural way by concatenation. A Blum–Shub–Smale
machine – in what follows called a BSS machine – is essentially a Random
Access Machine over R which can evaluate rational functions at unit cost
and whose registers can store arbitrary real numbers.

Definition 3.6.18. A BSS machine M over R is given by a finite set I of
instructions labelled by 0, . . . , N . The input and output spaces are subsets of
R∗. A configuration is a quadruple (k, r, w, x) ∈ I × N × N × R∗, where k is
the instruction currently being executed, r and w are the numbers of the so
called ‘copy registers’ (see below) and x describes the content of the registers
of the machine. Given an input x ∈ R∗, the computation is started with a
configuration (0, 0, 0, x). If a configuration (k, r, w, x) with k = N is reached,
the computation stops; in that case the value of x is the output computed
by the machine. The instructions of M are of the following types:
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• Computation. An instruction k of this type performs an update x0 ← gk(x)
of the first register, where gk is a rational function on Rm (for some m).
Simultaneously, the copy registers may be updated by rules r ← r + 1 or
r ← 0, and similarly for w. The other registers remain unchanged. The
next instruction will be k + 1.

• Branch. k: if x0 ≥ 0 goto � else goto k+ 1. The contents of the registers
remain unchanged.

• Copy. k : xw ← xr, i.e. the content of the ‘read register’ is copied into the
‘write register’. The next instruction is k + 1; all other registers remain
unchanged.

A set L ⊆ R∗ is in PR if there exists a BSS machine whose running
time on every X ∈ R∗ is bounded by a polynomial in |X |, and which
accepts X if and only if X ∈ L. The analogue of NP is the class NPR.
A set L ⊆ R∗ is in NPR if there exists a set L′ ∈ PR and a constant
k such that L = {X ∈ R∗ : (∃Y ∈ R∗)(|Y | ≤ |X |k ∧ (X,Y ) ∈ L′)}.
Equivalently, NPR can be defined as the class of problems over R∗ that are
decidable in polynomial time by a non-deterministic BSS machine, i.e. a
BSS machine that can non-deterministically guess real numbers Y ∈ R at
unit cost.

Encodings. Recall that R-structures are metafinite structures D =
(A,R,W ) with a second sort R = (R,+,−, ·, /,≤, (cr)r∈R). We want to relate
decision problems for R-structures (described by logical formulae) to decision
problems on R∗ (decided by BSS-machines). We first consider an example.

Example 3.6.19. (4-Feasibility.) The first problem that was shown to be
NPR-complete was the problem of whether a real polynomial of degree at
most four in n unknowns (where n varies with the input) has a real zero.
This problem can be considered as a decision problem on R-structures as
follows. Let A = {0, . . . , n}. The coefficients of a homogeneous polynomial
g ∈ R[X0, . . . , Xn] can be coded via a function C : A4 → R, such that

g =
∑

0≤i,j,k,�≤n
C(i, j, k, �)XiXjXkX�.

We obtain an arbitrary (not necessarily homogeneous) polynomial
f ∈ R[X1, . . . , Xn] of degree four by setting X0 = 1 in g. Thus, every
multivariate polynomial f of degree at most four is represented by the
R-structure (A,R, {C}), where A = ({0, . . . , n}, <, 0, n) and C is a function
from A4 into R.

Observe that R∗ can be viewed as the class of all R-structures where the
primary part is a finite linear order ({0, . . . , n − 1}, <), and W consists of a
single unary function X : {0, . . . , n− 1} → R. Hence decision problems on R∗

can be regarded as a special case of decision problems on R-structures (in the
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same way as words can be considered as special cases of finite structures).
Conversely, R-structures D = (A,R,W ) can be encoded in R∗. We choose a
ranking on A and replace all functions and relations in the primary part by
the appropriate characteristic functions χ : Ak → {0, 1} ⊆ R. This gives a
structure whose primary part is a plain set A, with functions X1, . . . , Xt of
the form Xi : Ak → R and with the ranking r : A→ R. Each of the functions
Xi can be represented by a tuple x0, . . . , xm−1 ∈ Rm, where m = |A|k
and xi = X(a(i)), and where a(i) is the ith tuple in Ak with respect to
the lexicographic order induced by r. The concatenation of these tuples
gives an encoding code(D, r) ∈ R∗ (which depends on the ranking r that
was chosen).

Obviously, for structures D of a fixed finite signature, the length of
code(D, r) is bounded by some polynomial n�, where n = |D| and � depends
only on the signature. Thus we can also view code(D, r) = (x0, . . . , xn�−1)
as a single function XD : A� → R, where X(a(i)) = xi for all i < n�.
Thus, encoding an R-structure in R∗ basically means representing the whole
structure by a single function (of appropriate arity) from {0, . . . , n − 1}
into R.

Furthermore, this encoding is first-order definable in the following
sense.

Lemma 3.6.20. For every signature τ , there is a first-order formula β(X, r)
of signature τ ∪ {X, r} such that, for all R-structures D of signature τ , for
all rankings r, and for all functions X,

(D, X, r) |= β(X, r) iff X = code(D, r).

As in the case of finite structures, we say that a class K of R-structures
is in the complexity class PR or NPR if the set of its encodings is. Recall
that a metafinite spectrum of R-structures is a set K of R-structures that
is definable by an existential second-order sentence ∃Y1 · · · ∃Yrψ, where ψ
is first-order and the variables Yi range over weight functions Yi : Ak → R.
Fagin’s Theorem now has the following analogue in the real setting.

Theorem 3.6.21 (Grädel and Meer). Let K be a class of R-structures.
Then K ∈ NPR if and only if K is a metafinite spectrum.

Proof. It is easy to see that metafinite spectra are in NPR. Suppose that
ψ = ∃Y1 · · ·Yrϕ. Given an input structure D, we guess assignments for all
functions Yi and evaluate ϕ on (D, Y1, . . . , Yr) in polynomial time.

For the converse, let K ∈ NPR and let K′ be the corresponding problem
in PR, with K = {D : ∃Y ((D, Y ) ∈ K′)}. Let M be a polynomial-time BSS
machine deciding K′, and let m be a natural number such that M stops
on encodings of (D, Y ) after less than nm steps and uses at most nm − 3
registers, where n = |D|.



220 3 Finite Model Theory and Descriptive Complexity

We first suppose that we have a ranking r : A→ R available. From r, the
induced (lexicographic) ranking rm : Am → R is first-order definable: we can
identify the element in A of maximal rank and thus have the number term n
available; we can then use rm(t) as an abbreviation for

r(t1)nm−1 + · · · r(tm−1)n + r(tm).

We can then identify Am with the initial subset {0, . . . , nm−1} of N. Thus, in
the formulae to be constructed below, m-tuples t = t1, . . . , tm of variables are
considered to range over natural numbers t < nm. Conditions such as t = 0
or t = s+ s′ can then be expressed by first-order formulae of vocabulary {r}.

The computation of M for a given input code(D, Y ) can be represented
by a function Z : A2m → R as follows:

• Z(0, t) is the instruction executed by M at time t.
• Z(1, t) and Z(2, t) are the indices of the read and write registers of M at

time t.
• Z(j + 3, t) is the content of register j at time t.

We construct a first-order formula ψ with the property that, for all ranked
structures (D, Y ) and all Z, we have that (D, Y, Z) |= ψ iff Z represents an
accepting computation of M for code(D, Y ).

We first have to express the assertion that at time t = 0, the function Z
encodes the input configuration of M on (D, Y ). Thus we need a subformula
stating that Z(i, 0) = 0 for i = 0, 1, 2 and that the values Z(j + 3, 0) encode
the input (D, Y ). By Lemma 3.6.20 this can be expressed in first-order logic.

Second, we have to ensure that for every t < nm − 1, if the sequence
〈Z(j, t) : j = 0, . . . , nm − 1〉 represents a configuration of M , then the
sequence of values Z(j, t + 1) represents the successor configuration. The
formula asserting this has the form

∀t
N∧

k=0

(Z(0, t) = k → ϕk)

where ϕk describes transitions performed by the instruction k.
Consider for example a computation instruction k : x0 ← g(x0, . . . , x�),

and assume in addition that it increases the index of the read register by 1
and sets the index of the write register back to 0. The formula ϕk then has
to express the following:

• Z(0, t + 1) = k + 1 (the next instruction is k + 1);
• Z(1, t + 1) = Z(1, t) + 1 (the read register index is increased by 1);
• Z(2, t + 1) = 0 (the write register index is set back to 0);
• Z(3, t+1) = g(Z(3, t), Z(4, t), . . . , Z(�+3, t)) (into register 0, M writes the

result of applying the rational function g to the register contents at time t).
• Z(j, t + 1) = Z(j, t) for all j > 3 (the other registers remain unchanged).
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Clearly, these conditions are first-order expressible. It should be noted that
whenever f0, . . . , f� are number terms and g : R� → R is a rational function,
then g(f0, . . . , f�) is also a number term.

For another example illustrating the explicit use of the embedding func-
tion, consider a copy instruction k : xw ← xr. Here the formula has to express
(besides the updating of the instruction number, etc. which is done as above),
the assertion that the content of the register Z(2, t) at time t+1 is the same as
the content of the register Z(1, t) at time t. This is expressed by the formula

∀j∀j′([Z(1, t) = rm(j) ∧ Z(2, t) = rm(j
′
)]

→ Z(j
′
+ 3, t + 1) = Z(j + 3, t)).

To express the assertion that M accepts its input, we just have to say
that Z(3, nm − 1) = 1 (by convention, the result of the computation, if it is
a single number, is stored in register 0).

Combining all these subformulae in the appropriate way, we obtain the
desired formula ψ. It then follows that for all structures D,

D ∈ K iff D |= (∃Y )(∃Z)ψ,

which proves the theorem for the case of ranked structures.
Finally, we do away with the assumption that the input structures are

ranked. If no ranking is given on the input structures D, we can introduce
one by existentially quantifying over the function r and adding a conjunct
α(r) which asserts that r is one–one and that, for all t with r(t) �= 0, there
exists an element s such that r(s) + 1 = r(t). It follows that

K = {D : D |= (∃r)(∃Y )(∃Z)(α ∧ ψ)}.

�

Example 3.6.22. (Logical description of 4-Feasibility.) An existential
second-order sentence for the 4-feasibility problem quantifies two functions
X : A → R and Y : A4 → R where X(1), . . . , X(n) describes the zero and
Y (u) is the partial sum of all monomials up to u ∈ A4 in f(X1, . . . , Xn)
(according to the lexicographical order on A4). Thus the 4-feasibility problem
is described by the sentence

ψ := (∃X)(∃Y )
(
Y (0) = C(0) ∧ Y (n) = 0 ∧ ∀u(u �= 0 →

Y (u) = Y (u − 1) + C(u)
∏4
i=1 X(ui))

)
.

Indeed, D |= ψ if and only if the polynomial f of degree four defined by D
has a real zero.
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Capturing Results for Other Complexity Classes

By combining the general ideas of descriptive complexity theory on finite
structures with the approach described here, one can find logical charac-
terizations for many other complexity levels, notably for polynomial time,
provided that the given R-structures are ranked (i.e. an ordering on the finite
part is available). This is carried out in some detail in [30, 53].
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3.7 Appendix: Alternating Complexity Classes

Alternating algorithms are a generalization of non-deterministic algorithms,
based on two-player games. Indeed, one can view non-deterministic algorithms
as the restriction of alternating algorithms to solitaire (i.e. one-player) games.
Since complexity classes are mostly defined in terms of Turing machines, we
focus on the model of alternating Turing machines. But note that alternating
algorithms can be defined in terms of other computational models, also.

Definition 3.7.1. An alternating Turing machine is a non-deterministic
Turing machine whose state set Q is divided into four classes Q∃ , Q∀ ,
Qacc, and Qrej. This means that there are existential, universal, accepting
and rejecting states. States in Qacc ∪Qrej are final states. A configuration of
M is called existential, universal, accepting, or rejecting according to its state.

The computation graph GM,x of an alternating Turing machine M for
an input x is defined in the same way as for a non-deterministic Turing
machine. Nodes are configurations (instantaneous descriptions) of M , there is
a distinguished starting node C0(x) which is the input configuration of M for
input x, and there is an edge from configuration C to configuration C′ if, and
only if, C′ is a successor configuration of C. Recall that for non-deterministic
Turing machines, the acceptance condition is given by the Reachability

problem: M accepts x if, and only if, in the graph GM,x some accepting
configuration Ca is reachable from C0(x). For alternating Turing machines,
acceptance is defined by the Game problem (see Sect. 3.1.3): the players
here are called ∃ and ∀, where ∃ moves from existential configurations and
∀ from universal ones. Further, ∃ wins at accepting configurations and loses
at rejecting ones. By definition, M accepts x if, and only if, Player ∃ has a
winning strategy from C0(x) for the game on GM,x.



3.7 Appendix: Alternating Complexity Classes 223

Complexity Classes

Time and space complexity are defined as for nondeterministic Turing
machines. For a function F : N → R, we say that an alternating Turing
machine M is F -time-bounded if for all inputs x, all computation paths from
C0(x) terminate after at most F (|x|) steps. Similarly, M is F -space-bounded
if no configuration of M that is reachable from C0(x) uses more than F (|x|)
cells of work space. The complexity classes ATIME(F ) and ASPACE(F )
contain all problems that are decidable by, respectively, F -time bounded and
F -space bounded alternating Turing machines.

The following classes are of particular interest:

• ALOGSPACE = ASPACE(O(log n)),
• APTIME =

⋃
d∈N

ATIME(nd),
• APSPACE =

⋃
d∈N

ASPACE(nd).

Alternating Versus Deterministic Complexity

There is a general slogan that parallel time complexity coincides with
sequential space complexity. Indeed, by standard techniques of complexity
theory, one can easily show that, for well-behaved (i.e. space-constructible)
functions F , ATIME(F ) ⊆ DSPACE(F 2) and DSPACE(F ) ⊆ NSPACE(F )
⊆ ATIME(F 2) (see [9] for details). In particular,

• APTIME = PSPACE;
• AEXPTIME = EXPSPACE.

On the other hand, alternating space complexity corresponds to exponen-
tial deterministic time complexity.

Theorem 3.7.2. For any space-constructible function F (n) ≥ log n, we have
that ASPACE(F ) = DTIME(2O(F )).

Proof. The proof is closely associated with the Game problem. For any
F -space-bounded alternating Turing machine M , one can, given an input x,
construct the computation graph GM,x in time 2O(F (|x|) and then solve the
Game problem in order to decide the acceptance of x by M .

For the converse, we shall show that for any G(n) ≥ n and any constant
c, DTIME(G) ⊆ ASPACE(c · logG).

Let L ∈ DTIME(G). There is then a deterministic one-tape Turing
machine M that decides L in time G2. Let Γ = Σ ∪ (Q × Σ) ∪ {∗} and
t = G2(n). Every configuration C = (q, i, w) (in a computation on some input
of length n) can be described by a word

c = ∗w0 · · ·wi−1(qwi)wi+1 · · ·wt∗ ∈ Γ t+2.

The ith symbol of the successor configuration depends only on the symbols
at positions i− 1, i, and i + 1. Hence, there is a function fM : Γ 3 → Γ such
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that, whenever symbols a−1, a0, and a1 are at positions i− 1, i and i + 1 of
some configuration c, the symbol fM (a−1, a0, a1) will be at position i of the
successor configuration c′.

The following alternating algorithm A decides L:

Input: x
Existential step: guess s ≤ t,

guess (q+a) ∈ Qacc ×Σ , i ∈ {0, . . . , s}
b := (q+a)

for j = 1 . . . s do
Existential step: guess a−1, a0, a1 ∈ Γ 3

verify that fM (a−1, a0, a1) = b. If not, reject.
Universal step: choose k ∈ {−1, 0, 1}

b := ak
i := i + k

od
if ith symbol of input configuration of M on x equals b then accept

else reject.

The algorithm A needs space O(logG(n)). If M accepts the input x, then
Player ∃ has the following winning strategy for the game on CA,x: the value
chosen for s is the time at which M accepts x, and (q+a), i are chosen so that
the configuration of M at time s is of the form ∗w0 · · ·wi−1(q+a)wi+1 · · ·wt∗.
At the jth iteration of the loop (that is, at configuration s− j), the symbols
at positions i− 1, i, i + 1 of the configuration of M at time s − j are chosen
for a−1, a0, a1.

Conversely, if M does not accept the input x, the ith symbol of the config-
uration at time s is not (q+a). The following holds for all j: if, in the jth iter-
ation of the loop, Player ∃ chooses a−1, a0, a1, then either f(a−1, a0, a1) �= b,
in which case Player ∃ loses immediately, or there is at least one k ∈ {−1, 0, 1}
such that the (i + k)th symbol of the configuration at time s− j differs from
ak. Player ∀ then chooses exactly this k. At the end, ak will then be different
from the ith symbol of the input configuration, so Player ∀ wins.

Hence A accepts x if, and only if, M does so. �

In particular, it follows that

• ALOGSPACE = PTIME;
• APSPACE = EXPTIME.

The relationship between the major deterministic and alternating
complexity classes is summarized by the following diagram:

LOGSPACE ⊆ PTIME ⊆ PSPACE ⊆ EXPTIME ⊆ EXPSPACE ⊆ . . .
|| || || ||

ALOGSPACE ⊆ APTIME ⊆ APSPACE ⊆ AEXPTIME ⊆ . . .
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Alternating Logarithmic Time

For time bounds F (n) < n, the standard model of alternating Turing
machines needs to be modified a little by an indirect access mechanism. The
machine writes down, in binary, an address i on an separate index tape to
access the ith symbol of the input. Using this model, it makes sense to define,
for instance, the complexity class ALOGTIME = ATIME(O(log n)).

Example 3.7.3. Construct an ALOGTIME algorithm for the set of palin-
dromes (i.e., words that are same when read from right to left and from left
to right).

Important examples of problems in ALOGTIME are

• the model-checking problem for propositional logic;
• the data complexity of first-order logic.

The results mentioned above relating alternating time and sequential
space hold also for logarithmic time and space bounds. Note, however, that
these do not imply that ALOGTIME = LOGSPACE, owing to the quadratic
overheads. It is known that ALOGTIME ⊆ LOGSPACE, but the converse
inclusion is an open problem.
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RAIRO Informatique Théorique et Applications, 33:329–339, 1999.
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51. E. Grädel and G. McColm. On the power of deterministic transitive closures.
Information and Computation, 119:129–135, 1995.
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55. E. Grädel and M. Otto. On logics with two variables. Theoretical Computer
Science, 224:73–113, 1999.
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73. M. Jurdziński. Small progress measures for solving parity games. In STACS
2000, 17th Annual Symposium on Theoretical Aspects of Computer Science,
Proceedings, Lecture Notes in Computer Science, No. 1770, pages 290–301.
Springer, 2000.

74. P. Kanellakis, G. Kuper, and P. Revesz. Constraint query languages. Journal
of Computer and Systems Sciences, 51:26–52, 1995.

75. B. Khoussainov and A. Nerode. Automatic presentations of structures. In
LCC ’94: Selected Papers from the International Workshop on Logical and
Computational Complexity, Lecture Notes in Computer Science, No. 960,
pages 367–392. Springer, 1995.

76. B. Khoussainov, S. Rubin, and F. Stephan. On automatic partial orders.
Proceedings of 18th Annual IEEE Symposium on Logic in Computer Science,
LICS 03, pages 168–177, 2003.

77. B. Khoussainov, A. Nies, S. Rubin, and F. Stephan. Automatic structures:
Richness and limitations. Proceedings of 19th Annual IEEE Symposium on
Logic in Computer Science, LICS 04, pages 44–53, 2004.

78. B. Khoussainov, S. Rubin, and F. Stephan. Definability and regularity in
automatic structures. In Proceedings of STACS 04, pages 440–451, 2004.

79. P. Kolaitis. The expressive power of stratified logic programs. Information
and Computation, 90:50–66, 1991.

80. S. Kreutzer. Expressive equivalence of least and inflationary fixed point logic.
In Proceedings of 17th IEEE Symp. on Logic in Computer Science LICS02,
pages 403–410, 2002.

81. G. Kuper, L. Libkin, and J. Paredaens, editors. Constraint Databases.
Springer, 2000.

82. D. Martin. Borel determinacy. Annals of Mathematics, 102:336–371, 1975.
83. Y. Matijasevich. Hilbert’s Tenth Problem. MIT Press, 1993.
84. K. Meer. Query languages for real number databases based on descriptive

complexity over R. In Proc. 24th International Symposium on Mathematical
Foundations of Computer Science MFCS 99, Lecture Notes in Computer
Science Nr. 1672, pages 12–22. Springer, 1999.

85. Y. Moschovakis. Elementary Induction on Abstract Structures. North-Holland,
1974.

86. A. Mostowski. Games with forbidden positions. Technical Report 78,
University of Gdansk, 1991.

87. D. Muller and P. Schupp. Groups, the theory of ends, and context-free
languages. Journal of Computer and System Sciences, 26:295–310, 1983.

88. D. Muller and P. Schupp. The theory of ends, pushdown automata, and
second-order logic. Theoretical Computer Science, 37:51–75, 1985.

89. M. Otto. Bounded Variable Logics and Counting. Springer, 1997.
90. M. Otto. Bisimulation-invariant Ptime and higher-dimensional mu-calculus.

Theoretical Computer Science, 224:237–265, 1999.
91. C. Papadimitriou. A note on the expressive power of Prolog. Bulletin of the

EATCS, 26:21–23, 1985.
92. S. Rubin. Automatic Structures. PhD thesis, University of Auckland, New

Zealand, 2004.
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4

Logic and Random Structures

Joel Spencer

In the world of randomization almost everything seems to be possible.
– Michael Rabin

4.1 An Instructive Example

We begin with a rather easy random model which illustrates many of the
concepts we shall deal with. We call it the simple unary predicate with
parameters n, p, and denote it by SU(n, p). The model is over a universe Ω of
size n, a positive integer. We imagine each x ∈ Ω flipping a coin to decide if
U(x) holds, and the coin comes up heads with probability p. Here we have p
real, 0 ≤ p ≤ 1. Formally we have a probability space on the possible U over
Ω defined by the properties Pr[U(x)] = p for all x ∈ Ω and the events U(x)
being mutually independent. We consider sentences in a first-order language.
In this language, we have only equality (we shall always assume we have
equality) and the unary predicate U . (The cognoscenti should note that Ω
has no further structure and, in particular, is not considered an ordered set.)

This is a rather spartan language. One thing we can say is

Y ES := ∃xU(x),

that U holds for some x ∈ Ω. Simple probability gives

Pr[SU(n, p) |= Y ES] = 1− (1 − p)n

As p moves from zero to one, Pr[Y ES] moves monotonically from zero to
one. We are interested in the asymptotics as n→∞. At first blush this seems
trivial: for p = 0, SU(n, p) never models Y ES while for any constant p > 0,

lim
n→∞ Pr[SU(n, p) |= Y ES] = lim

n→∞ 1− (1− p)n = 1
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In an asymptotic sense, Y ES has already almost surely occurred by the time
p reaches any positive constant.

This leads us to a critical notion. We do not restrict ourselves to p
constant but rather consider p = p(n) as a function of n. What is the
parametrization p = p(n) that best enables us to see the transformation
of Pr[SU(n, p(n)) |= Y ES] from zero to one? Some reflection leads to the
parametrization p(n) = c/n. If c is a positive constant, then

lim
n→∞ Pr[SU(n, p(n)) |= Y ES] = lim

n→∞ 1− (1− c

n
)n = 1− e−c

(Technically, as p ≤ 1 always, this parametrization is not allowable for n < c
– but since we are only concerned with limits as n→∞ this will not concern
us.) If we think of c going from zero to infinity, then the limit probability is
going from zero to one. We are actually interested less (in this exposition) in
the actual limits than in whether the limits are zero or one.

We say that a property A holds almost always (with respect to a given
p(n)) if limn→∞ Pr[SU(n, p(n)) |= A] = 1. We say that A holds almost
never if the above limit is zero or, equivalently, if ¬A holds almost surely.
This notion is extremely general. Whenever we have, for all sufficiently large
positive integers n, a probability space over models of size n, we can speak of a
property A holding almost surely or almost never. For the particular property
Y ES, the exact results above have the following simple consequences:

• If p(n) � n−1 then Y ES holds almost never.
• If p(n) * n−1 then Y ES holds almost surely.

Thus, for example, when p(n) = n−1.01, Y ES holds almost never, while when
p(n) = n−0.99, Y ES holds almost surely.

We shall say that n−1 is a threshold function for the property Y ES. More
generally, suppose we have a notion of a random model on n vertices with
a probability p of some predicate. We say p0(n) is a threshold function for
a property A if, whenever p(n) � p0(n), the property A holds almost never,
and whenever p(n) * p0(n) the property A holds almost surely. This notion,
due to Paul Erdős and Alfred Rényi, says roughly that p0(n) is the “region”
around which Pr[A] is moving from near zero to near one. The threshold
function, when it exists, is not totally determined – we could have taken
5/n as the threshold function for Y ES – but is basically determined up to
constant factors. In a rough way we think of p(n) increasing through the
functions of n – for example from n−2 to n−1 to n−1 lnn to ln−5 n – and the
threshold function is that place where Pr[A] changes.

A natural problem for probabilists is to determine the threshold function,
if one exists, for a given property A. For logicians, the natural question
would be to determine all possible threshold functions for all properties
A expressible in a given language L. Unfortunately there are technical
difficulties (especially with later more complex models) with threshold
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functions – properties A need not be monotone, threshold functions need not
exist, and, worst of all, the limits of probabilities might not exist. Rather,
the logician looks for a zero–one law, of which the following is prototypical.

Theorem 4.1.1. Let p = p(n) satisfy p(n) * n−1 and 1 − p(n) * n−1.
Then, for any first-order property A,

lim
n→∞ Pr[SU(n, p) |= A] = 0 or 1

Further, the limiting value depends only on A and not on the choice of p(n)
within that range.

Our approach to this theorem, which will also be used in later more
complex cases, is to find an explicit theory T such that

• every A ∈ T holds almost surely;
• T is complete.

Will this suffice? When T |= B, finiteness of proof gives us the result that
B follows from some A1, . . . , As ∈ T and hence from A1 ∧ . . . ∧ As. But the
finite conjunction of events holding almost surely holds almost surely, so B
would hold almost surely. By completeness, either T |= B or T |= ¬B, and in
the latter case ¬B holds almost surely so that B holds almost never.

In our situation, T is given by two simple schemas.

1. (For r ≥ 1.) There exist distinct x1, . . . , xr with U(xi) for 1 ≤ i ≤ r.
2. (For r ≥ 1.) There exist distinct x1, . . . , xr with ¬U(xi) for 1 ≤ i ≤ r.

Note that the number X of x with U(x) has a binomial distribution with
parameters n, p(n) – that the event X ≥ r holds almost surely follows from
basic probabilistic ideas and from the assumption np(n) → ∞. The second
schema follows from n(1− p(n)) →∞, reversing the roles of U and ¬U .

Why is this T complete? Proving completeness of a theory T is bread and
butter to the logic community – from the myriad of methods, we choose a
combinatorial approach based on the Ehrenfeucht game, as described in Sect.
4.14. Let t ≥ 1 be arbitrary and let M1,M2 be two countable models of T . It
suffices to show that Duplicator wins the game EHR(M1,M2; t).

In our case the Duplicator’s strategy is simple. A countable model M of
T must have an infinite number of x ∈M with U(x) (as for all r ≥ 1 it must
have at least r such x) and, similarly, an infinite number of x ∈ M with
¬U(x). Now when Spoiler selects, say, a new x ∈ M1 with U(x) Duplicator
simply selects a new x′ ∈ M2 with U(x′) – as there are only a finite number
t of moves, he cannot run out of possible x′.

In this instance the countable models of T were particularly simple –
indeed the theory T was ℵ0-categorical; all countable models were isomorphic.
In future more complex situations this will generally not be the case, and
indeed we find the study of the countable models of the almost sure theory
T to be quite intriguing in its own right.
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4.2 Random Graphs

A graph G consists of a set of vertices V and an areflexive symmetric binary
relation on V . We write the relation x ∼ y and say that x, y are adjacent.
Pictorially, there is an edge from x to y. For the graph theorists, our graphs
are undirected, with neither loops nor multiple edges. The random graph
G(n, p) (n ≥ 1 integral, p real, 0 ≤ p ≤ 1) is on a vertex set V of size n,
where,for each distinct x, y, Pr[x ∼ y] = p and these events are mutually
independent. We may think of each pair x, y of vertices as flipping a coin to
decide whether or not to have an edge between them, where the probability
that the coin comes up heads is p.

It is a relatively rare area of mathematics that has an explicit starting
point. The subject of random graphs began with a monumental paper by
Paul Erdős and Alfred Rényi in 1960. The very title of their paper, “On the
evolution of random graphs,” speaks to a critical vantage point. As the edge
probability p increases, the random graph G(n, p) increases in complexity.
For many natural properties A, there will be a threshold function p0(n) for
its occurence. As in Sect. 4.1, when p(n) � p0(n) A will hold almost never,
while when p(n) * p0(n) A will hold almost always. Finding threshold
functions has been a major preoccupation for researchers in random graphs.
Let us give some examples, together with some intuitive justification for the
threshold functions.

• Containing a K4 – i.e. containing four vertices with all six pairs adjacent.
The threshold function is n−2/3. There are

(
n
4

)
∼ n4/24 possible K4s and

each has six adjacencies with probability p6, so that the expected number
of K4s is ∼ n4p6/24. When p(n) � n−2/3 this expectation goes to zero,
so that almost surely there are none of them. When p(n) * n−2/3 this
expectation goes to infinity. By itself, this does not imply that almost
surely there is at least one K4 but more refined methods – in particular,
an examination of the variance of the number of K4s – do show that
almost surely there will be a K4.

• Containing a triangle. The threshold function is n−1, for reasons similar
to those above.

• No isolated vertices. In first-order language ∀x∃yx ∼ y. Here n−1 lnn is the
threshold function. Roughly, a given vertex x has probability (1−p)n−1 ∼
e−pn of being isolated. When pn > (1 + ε) lnn, this probability is o(n−1),
so that the expected number of isolated vertices is o(1) and almost surely
there are none. When pn < (1− ε) lnn, this probability is * n−1, so that
the expected number of isolated vertices goes to infinity, and more refined
techniques show that almost surely there are isolated vertices.

• Connectivity. This was one of the most beautiful results in the Erdős–
Rényi paper. It turns out that connectivity has the same behavior as
no isolated vertices. Their result was amazingly precise. We parametrize
p = (lnn)/n + c/n. For c any real (positive or negative) constant,
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lim
n→∞ Pr[G(n, p) connected] = e−e

−c
.

• Every two vertices have a common neighbor. In first order language
∀x1∀x2∃y1y1 ∼ x1 ∧ y1 ∼ x2. The threshold function is n−1/2 ln1/2 n. Any
x1, x2 have an expected number (n−2)p2 ∼ np2 of common neighbors. This
would naturally lead us to consider p = n−1/2. Indeed, for p� n−1/2 a ran-
domly chosen x1, x2 will not have a common neighbor, while for p* n−1/2

a randomly chosen x1, x2 will have a common neighbor, and indeed many
common neighbors. But this does not suffice for every pair x1, x2 to have
a common neighbor; for that one needs the extra polylogarithmic term.

• Every two vertices are joined by a path of length three. In first-order
language ∀x1∀x2∃y1∃y2x1 ∼ y1∧y1 ∼ y2∧y2 ∼ x2. The threshold function
is n−2/3 ln1/3 n. Any x1, x2 have

(
n−2

2

)
∼ n2/2 potential paths (choices

of y1, y2) of length three, and each potential path has three adjacencies
with probability p3, so that the expected number of paths is ∼ n2p3/2.
This would lead us to consider p = n−2/3 as a threshold function but, as
above, an extra polylogarithmic term is needed to assure that every pair
x1, x2 has such a path.

These threshold functions, and countless others, seemed to this author
to have a common property: the power of n involved was always a rational
number. There might be other, generally polylogarithmic, factors but they
would be of smaller order than the power of n. Nowhere, so it seemed, was
there a natural property with a threshold function, say, p = n−π/7. In 1988
this author and Saharon Shelah were able to give a formal justification for
this observation, and this result is the centerpiece of our discussions.

Theorem 4.2.1. Let 0 < α < 1, α irrational. Set p(n) = n−α. Then, for
every first-order property A,

lim
n→∞ Pr[G(n, p) |= A] = 0 or 1.

The situation where α > 1 has also been studied. It turns out to be
considerably simpler than the 0 < α < 1 case and will not be considered here.

Our approach will be that used in Sect. 4.1. We shall find a theory T = Tα
such that each A ∈ Tα holds almost surely, and Tα will be shown to be
complete, using countable models and the Ehrenfeucht game. We shall need
several preliminaries.

4.3 Extension Statements

The examples above, “Every vertex has a neighbor,” “every two vertices
have a common neighbor,” and “every two vertices are joined by a path of
length three”, are all examples of a vital kind of first-order statement that
we shall call extension statements. These statements are of the form “For
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all x1, . . . , xr, there exist y1, . . . , yv P”, where P is that certain adjacencies
between some yi, yj and some xi, yj must exist. P never considers adjacencies
between pairs xi, xj and never demands nonadjacency. We allow the case
r = 0, so that the extension statement reduces to a purely existential
statement, but require v > 0.

To formalize this, we define a rooted graph to be a pair (R,H), where
H is a graph (with V (H) and E(H) denoting its vertex and edge sets,
respectively) and R is a proper subset of the vertices. Labeling the roots
x1, . . . , xr and the nonroots y1, . . . , yv, we define the extension statement
Ext(R,H) to be that for all x1, . . . , xr there exist y1, . . . , yr having the
edges of H , where we do not examine the edges between the roots and we
allow extra edges. A rooted graph (R,H) has three parameters. The number
of roots is denoted by r. The number of nonroots is denoted by v. The
number of edges (where edges between roots are not counted) is denoted by
e. Perhaps surprisingly, r plays a relatively minor role. The key parameter,
as the examples below will indicate, is the sign of v − eα.

We call (R,H) dense if v−eα < 0 and sparse if v−eα > 0. The irrational-
ity of α comes in at this point, making this a strict dichotomy. We further
call (R,H) rigid if, for all S with R ⊆ S ⊂ V (H), the rooted graph (S,H) is
dense. (As S may be R itself, “rigid” implies “dense”.) We call (R,H) safe
if, for all S with R ⊂ S ⊆ V (H), the rooted graph (R,H |S) is sparse. (Here
H |S is the restriction of H to S; we simply throw all other vertices away.
As S may be V (H) itself, “safe” implies “sparse”.) Very roughly we think of
“rigid” as meaning dense through and through, and “safe” as meaning sparse
through and through. We call (R,H |S) a subextension of (R,H), and we call
(S,H) a nailextension (we are nailing down some more roots) of (R,H).

Let us look at several examples with α = π/7 = 0.448 · · · . We have
selected this α because it seems to have no special properties whatsoever.

• Every two vertices have a neighbor. H has y1 adjacent to x1, x2;
r = 2, v = 1 and e = 2, so v − eα > 0 and (R,H) is sparse and safe.

• Every three vertices have a neighbor. H has y1 adjacent to x1, x2, x3;
r = 3, v = 1 and e = 3, so v − eα < 0 and (R,H) is dense and rigid.

• Every vertex lies in a K5. H has y1, y2, y3, y4, x1 with all ten adjacencies;
r = 1, v = 4 and e = 10, so v − eα < 0 and (R,H) is dense and rigid.

• Every vertex lies in a K4. H has y1, y2, y3, x1 with all six adjacencies;
r = 1, v = 3 and e = 10, so v − eα > 0 and (R,H) is dense and rigid.

• Every two vertices lie in a K4 except, possibly, they may be nonadjacent.
H has y1, y2, x1, x2 with five adjacencies (not x1, x2): r = 2, v = 2 and
e = 5, so v − eα < 0 and (R,H) is dense and rigid.

• Every three vertices have a common neighbor, which itself has a (different)
neighbor. H has y1 adjacent to x1, x2, x3, and y2 adjacent to y1. Here
r = 3, v = 2, e = 4 and v − eα > 0, so that (R,H) is sparse. But (R,H)
is not safe, since the subextension “every three vertices have a common
neighbor” (S = {x1, x2, x3, y1}) is not sparse.
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• Every four vertices have a common neighbor which itself has a (different)
neighbor. H has y1 adjacent to x1, x2, x3, x4, and y2 adjacent to y1. Here
r = 4, v = 2, e = 5 and v − eα < 0, so that (R,H) is dense. But nailing
down y1, by setting S = R ∪ {y1}, gives (S,H) with r = 5, v = 1, e = 1
and v − eα > 0, so that y2 is flapping in the wind and (R,H) is not rigid.

It can be shown that Ext(R,H) holds almost surely if and only if
(R,H) is safe. Let us see the intuitive justification. Given the x1, . . . , xr we
have ∼ cnv choices for y1, . . . , yv and each choice will have the needed e
adjacencies with probability pe; hence the expected number of extensions is
∼ cnvpe ∼ cnv−eα. When v − eα < 0 this expected number goes to zero, so
almost surely a random x1, . . . , xr will not have an extension. If there is a
subextension (R,H |S) which is not sparse (and hence dense) almost surely a
random x1, . . . , xr cannot be extended to H |S and hence cannot be extended
to H . The converse requires more work.

What about “rigid”? It is not the case that every three vertices have a
common neighbor; indeed, a random three vertices almost surely will not
have a common neighbor. But some sets of three vertices do have a common
neighbor. (Take a vertex y1, and take three of its neighbors x1, x2, x3 –
those three vertices have the common neighbor y1.) When x1, x2, x3 have a
common neighbor, that is a special property of the triple. It is not special
when x1, x2 have a common neighbor since every pair of vertices have a
common neighbor. It will turn out that all special properties of bounded sets
of vertices are describable in terms of rigid extensions.

4.4 Closure

Fix α ∈ (0, 1) irrational and t ≥ 1. Let G be any graph, although we shall be
interested in G ∼ G(n, p) with p = n−α. Let X be any set of vertices of G.
We define the t-closure of X , denoted by clt(X).

Our first definition of clt(X) is algorithmic. We say y1, . . . , yv form an
(R,H) extension over x1, . . . , xr if they have the required adjacencies of H
between the yi, yj and the xi, yj . We say y1, . . . , yv form a rigid extension
over x1, . . . , xr if they form an (R,H) extension for some rigid (R,H). Now
begin with X . If any y1, . . . , yv with (critically) v ≤ t form a rigid extension
over X , then add those vertices to X . Iterate until there are no further rigid
extensions. The final set is clt(X).

The second definition is that clt(X) is the minimal set Z containing X
which does not have any rigid extensions of at most t vertices.

Justifying the assertion that these two definitions are equivalent and
indeed that they are well defined (e. g. that the first does not depend on the
order in which rigid extensions are added on) requires a series of relatively
elementary combinatorial lemmas, which we shall omit here. As an example,
cl4(x1, x2) might consist of x1, x2; y1, y2 adjacent to each other and to both
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x1, x2; y3, y4, y5, y6, forming a K5 with y2; and y7 being a common neighbor
of x2, y1, y5.

Lemma 4.4.1 (Nonexistence Lemma). For every t ≥ 1 almost surely
clt(∅) = ∅ in G ∼ G(n, n−α).

Proof When (∅, H) is rigid (or even just dense) it has v vertices and e edges
with v − eα < 0 so that the expected number of copies of H is ∼ cnvpe,
which goes to zero. Hence, almost surely, there is no copy of H . With t fixed,
there are only a finite number of such H ’s to consider, so almost surely none
of them exist as subgraphs of G.

Let x1, . . . , xr ∈ G, x′
1, . . . , x

′
r ∈ G′. We see that their t-closures are isomor-

phic, and write clt(x1, . . . , xr) ∼= clt(x′
1, . . . , x

′
r) if there is a graph isomorphism

ϕ between the t-closures which preserves both adjacency and nonadjacency
and which satisfies ϕ(xi) = x′

i for 1 ≤ i ≤ r. When H is the restriction of
G to clt(x1, . . . , xr) we write clt(x1, . . . , xr) ∼= H , but with the additional
understanding that the roots x1, . . . , xr are in specified positions in H . For
completion we include the case t = 0: we define the 0-closure of X to be X
and say that cl0(x1, . . . , xr) ∼= cl0(x′

1, . . . , x
′
r) if the map ϕ with ϕ(xi) = x′

i for
1 ≤ i ≤ r is a graph isomorphism on these sets of r vertices. Observe that stat-
ing clt(x1, . . . , xr) ∼= H is a first-order predicate. In the example of the preced-
ing paragraph, it would consist of stating the existence of the y1, . . . , y7 with
their appropriate adjacencies and then, for each of the finite list of possible
(R,H) rigid extensions with v ≤ 4, the nonexistence of z1, . . . , zv having those
adjacencies over x1, . . . , y7. A priori, the t-closure might be arbitrarily large,
and the following lemma plays an important role in limiting its possibilities.

Lemma 4.4.2 (Finite Closure Lemma). For all α ∈ (0, 1) and irrational,
r, t ≥ 1 integers, there exists K such that, in G ∼ G(n, n−α), almost surely

|clt(x1, . . . , xr)| < r + K for all x1, . . . , xr.

Proof: We set ε = min(eα − v)/v over all integers v, e with v ≤ t and
v − eα ≤ 0. Note, critically, that the restriction v ≤ t allows us to restrict
to a finite number of cases, and thus the min does exist and (as α is
irrational) is positive. We set K = �r/ε�.

Suppose that the result was false and there was R = {x1, . . . , xr} with
a larger t-closure. Then there would be a sequence R = R0 ⊂ R1 ⊂ . . . ⊂ Rl
where each Ri+1 was rigid over Ri with fewer than t nonroots and Rj having a
size in [r+K, r+K+t). (That is, we continue taking rigid extensions and stop
when at least r+K vertices are in the set.) Let Hi be the restriction of G to Ri
and set H equal to the final Hl. Let (Ri−1, Hi) have parameters vi, ei. Then
H has V = r +

∑l
i=1 vi vertices and at least E =

∑l
i=1 ei edges. Roughly,

the r roots are our capital and each extension costs us eα− v. Formally,

V − Eα ≤ r +
l∑

i=1

(vi − ei)α ≤ r − ε

l∑

i=1

vi ≤ r −Kε < 0.

The existence of such an H would then violate the Nonexistence Lemma.
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4.5 The Almost Sure Theory

To describe the almost sure theory T = Tα, we require one more somewhat
technical point. When (R,H) is safe, we want every x1, . . . , xr to have an
(R,H) extension y1, . . . , yv. But we further need that these y’s have no
additional properties relative to the x’s. We define this in the first-order
world via rigid extensions. Roughly we want to say that any rigid extension
over the x’s and y’s is really just over the xs.

Definition. We say that y1, . . . , yv is t-generic over x1, . . . , xr if the
following holds. Consider any z1, . . . , zw distinct from the x’s and y’s with
(critically) w ≤ t, which forms a rigid extension over x1, . . . , xr, y1, . . . , yv.
Then there are no edges between any zi and any yj.

The almost sure theory Tα consists of two schemas.

• Nonexistence. (For H with v vertices, e edges, and v− eα < 0) There does
not exist a copy of H . To express it in slicker form – for all t ≥ 1, clt(∅) = ∅.

• Generic Extension. (For (R,H) safe, t ≥ 0) For all x1, . . . , xr, there exist
y1, . . . , yv such that the following apply:
1. y1, . . . , yv form an (R,H) extension over x1, . . . , xv.
2. There are no additional edges of the form yi, yj or yi, xj except those

mandated by H .
3. y1, . . . , yv is t-generic over x1, . . . xv. (For t = 0, exclude this condition.)

We have seen by the Nonexistence Lemma that each A in the Nonexis-
tence schema holds almost surely. We indicate the argument for the Generic
Extension schema. Let (R,H) be safe. For any x = (x1, . . . , xr), let N(x)
denote the number of (R,H) extensions y = (y1, . . . , yv). Let x1, . . . , xr be
selected randomly so that N = N(x) becomes a random variable. We have
seen that the expectation μ := E[N ] ∼ cnvpe, which goes to infinity like a
positive power of n. At the heart of this (and the one fairly technical part of
the probability analysis) is a large-deviation result: for any fixed ε > 0,

Pr[|N(x)− μ| > εμ] = o(n−r).

Actually, the probability can be bounded by exp[n−λ] for a positive λ, but
the above suffices for our purposes. Here N counts extensions and so is the
sum of ∼ cnv indicator random variables (one for each distinct extension)
each of which are one (i.e., the extension is there) with probability pe. If we
could think of N as a binomial distribution with parameters cnv, pe, then the
above large-deviation result would follow from standard probability results,
known as the Chernoff bounds. The difficulty arises from the fact that the
indicator random variables are not independent, the potential extensions
have a complex overlap pattern. Most of the potential extensions (as v is
fixed and n → ∞) do not overlap, and so their indicator random variables
are independent. Still, it requires some technical skill, which we omit from
this presentation, to show the large-deviation result.
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Given the large-deviation result, we can easily deduce a counting theorem:
almost surely the number of extensions N(x) lies between μ(1 ± ε) for all
choices of x. This follows since there are only O(nr) choices for the roots
and the failure probability is o(n−r) for any particular choice. Now, modulo
some combinatorial work, we can deduce Generic Extension. For each x,
the number of (R,H) extensions is Θ(nv−eα). How many of these are not
t-generic? There are only a finite number of ways y can be not t-generic over
x. One shows that for each such possibility the number of such extensions is
(using the counting theorem upper bound) at most O(nv

′−αe′) where v′−αe′

is smaller than v − eα. Roughly, the existence of a rigid extension would add
v1 vertices and e1 edges with v1 − e1α < 0 and that would decrease v − eα.
The total number of non-t-generic extensions over x is then bounded by a
constant times a smaller power of n. For n sufficiently large, this is smaller
than the total number of extensions and therefore some (R,H) extension –
indeed, almost all such extensions – will be t-generic.

The completeness of Tα can be shown via the Ehrenfeucht game but
requires a surprisingly subtle strategy for Duplicator. Let G,G′ be models
of Tα, fix the number of rounds u ≥ 1, and consider the Ehrenfeucht game
EHR(G1,G2; u).

Define integers t0, t1, . . . , tu as follows. Set t0 = 0 and (for convenience)
t1 = 1. Given ti, select ti+1, where the following apply:

1. ti+1 ≥ ti.
2. Almost surely in G(n, n−α), for every X of size i + 1, the ti-closure of X

has a size of at most ti+1 vertices outside of X .

Of course, the existence of ti+1 requires the Finite Closure Lemma. Now
we describe Duplicator’s strategy. Let xj , x

′
j denote the vertices of G,G′

respectively selected in the jth round. Let 0 ≤ i ≤ u and set s = u − i for
convenience. Duplicator plays so that after the sth round (or, equivalently,
with i rounds remaining) the ti-closure of (x1, . . . , xs) and the ti-closure of
(x′

1, . . . , x
′
i) are isomorphic, the isomorphism sending xi to x′

i.
At the start of the game, setting t = tu, the Nonexistence Schema assures

that clt(∅) is the same in G and G′, so Duplicator is fine. At the end of
the game, the 0-closures are isomorphic, which is precisely the condition for
Duplicator to have won. It thus suffices to show (the hard part) that if this
condition is satisfied for i, then regardless of Spoiler’s move Duplicator has
a response that preserves the condition for i− 1.

To avoid subscripts, let us fix i and write BIG := ti, SMALL := ti−1,
x = (x1, . . . , xs) and x′ = (x′

1, . . . , x
′
s). By symmetry, we can assume that

Spoiler plays next in G. Let y denote his next move. There are two basic
cases which we dub Inside and Outside.

We say y is Inside if y ∈ clBIG(x). As SMALL ≤ BIG, this then
determines clSMALL(x, y) which lies entirely inside clBIG(x). Duplicator
checks the isomorphism ϕ between the BIG-closures of x,x′ and selects
y′ = ϕ(y), the vertex corresponding to y under the isomorphism.
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Otherwise, y is Outside. Let OLD denote the BIG-closure of x. Dupli-
cator calculates clSMALL(x, y) and sets NEW equal to those vertices of
it which are not already in OLD. Our definition of BIG, which in turn
depends on the Finite Closure Lemma, assures us that NEW has at most
BIG vertices. Say NEW over OLD forms an (R,H) extension. We need
now a combinatorial lemma (proof omitted) that any nonsafe extension
contains a rigid subextension. From this it follows that (R,H) must be safe,
since otherwise there would be a nonempty NEW−, rigid over OLD, but
then it would be in OLD by the closure definition. Duplicator then goes
over to G′, and by t-generic extension (t = SMALL) finds a NEW ′ over
OLD′ = clBIG(x′) with precisely the same edges and selects y′ as the vertex
of NEW ′ corresponding to y. This immediately gives the result that the
SMALL-closure of x′, y′ contains a copy of the SMALL-closure of x, y and
some combinatorial lemmas involving t-genericity ensure that it contains
nothing more and that the two SMALL-closures are isomorphic.

This shows that Tα is complete, and hence the zero-one law.

4.6 The Case p Constant

One of the original motivations for considering this area was a beautiful
result shown independently by Glebskii et al. and by Fagin. Let 0 < p < 1 be
constant. They showed a Zero-One Law for this G(n, p), that every first-order
A holds either almost surely or almost never.

With our machinery the proof is quite quick. The theory T is given by
one schema. (For all r, s ≥ 0) For all distinct x1, . . . , xr, y1, . . . , ys there exists
a distinct z adjacent to all of the xi and to none of the yj .

Fix r, s, p. We call z a witness (relative to the x’s and y’s) if it has
precisely the desired adjacencies. Each z has a probability ε := pr(1 − p)s

of being a witness. The events of being a witness are independent (involving
disjoint edge sets) so the probability is (1− ε)n−r−s that there is no witness.
There are

(
n
r

)(
n−r
s

)
≤ nr+s choices for the x’s and y’s. Hence the probability

that any such choice produces no witness is ≤ nr+s(1− ε)n−r−s. Fixing r, s, p
fixes ε > 0 and exponential decay kills off polynomial growth, so the failure
probability goes to zero.

The graphs G modeling T are said by Peter Winkler to have the Alice’s
Restaurant property. Members of a certain generation may remember the
refrain, “You can get anything you want at Alice’s Restaurant.” All possible
witnesses are there.

Let G,G′ model T . Duplicator’s stategy is simplicity itself. Staying alive.
When xi is played in G, Duplicator looks for x′

i ∈ G′ with the appropriate
adjacencies to the previously selected vertices. By the Alice’s Restaurant
property, she never gets stuck.
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4.7 Countable Models

Whenever we have a zero-one law, we have the complete theory T of those
sentences holding almost surely. By the Gödel Completeness Theorem, such
a theory must have a finite or countable model. The models cannot be finite,
since for every r ≥ 1 the sentence “There exist distinct x1, . . . , xr” is in the
almost sure theory since it holds for all n ≥ r. Thus T must have a countable
model – in our case a countable graph G. What does G look like? The first
question is whether G is unique – that is, whether T is ℵ0-categorical.

Consider first the Alice’s Restaurant theory T for p constant. This is
ℵ0-categorical by an elegant argument. Let G,G′ be two countable models
of T , both labeled by the positive integers. We build up an isomorphism
Φ : G→ G′ by alternating left stages and right stages. After n steps the map
Φ will map n elements of G into n elements of G′, preserving adjacency and
nonadjacency. For a left stage, let x be the least element of G for which Φ(x)
is not defined. We require of Φ(x) that, for any a ∈ G for which Φ(a) has
been defined, Φ(x) must be either adjacent or nonadjacent to Φ(a) depending
on whether x is adjacent or nonadjacent to a. By Alice’s Restaurant, we can
find such an x′. In the right stage we reverse the roles of G,G′. Let x′ be the
least element of G′ for which Φ−1(x′) is not defined, and find x = Φ−1(x′)
with the appropriate adjacencies. By step 2n, vertices 1, . . . , n have been used
up in both G and G′ so that at the end of this infinite process all vertices
have been used up and Φ is a bijection giving the desired isomorphism. The
countable graph G satisfying Alice’s Restaurant is sometimes called the Rado
graph in honor of the late Richard Rado.

What about the theory Tα for 0 < α < 1 irrational? This is not ℵ0-
categorical. We indicate two arguments that create (well, prove the existence
of) different countable models.

Consider rigid extensions with r = 1, and so of the form ({x}, H), with
parameters v, e where (∅, H) is safe. (With α = π/7, an example is H = K5.)
For such an H almost surely there exist copies of H but most vertices do not
lie in such copies. Suppose ({x}, Hi) is a sequence of such extensions with
parameters vi, ei. For any s, define the graph Hs to be the union of H1, . . . , Hs.
Here, we consider the Hi as disjoint vertex sets except for the common vertex
x. Suppose further that there almost surely exists a copy of Hs. Such a
sequence can be shown to exist for any α by employing a little number theory.
The key is to find vi, ei such that vi − eiα is only very slightly negative. Now
we can create a model in which some element is in a copy of Hs for all s. We
add a constant symbol c to our logic and add the infinite schema (for s ≥ 1)
that c is in a copy of Hs. Any finite segment of this system is consistent,
since in T itself one has that there exists a copy of Hs. By compactness there
exists a model and the element corresponding to c has the desired property.

Now we create a special countable graph Gα that models Tα. The vertices
will be the positive integers. For every safe rooted graph (R,H) and every
r = |R| distinct integers x = (x1, . . . , xr) consider the witness demand that
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there must exist a y = (y1, . . . , yv) forming an (R,H) extension over x.
Witness demands would include, continuing with our standard α = π/7
example, that there exists a y1 adjacent to 167, 233 or that there exist
y1, y2, y3 forming a K4 with 26. We include the case R = ∅ so that one
demand is that there exist y1, y2 forming an edge. We turn the witness
demands into a countable list. Now satisfy them one by one using new points
in a minimal way. That is, when we need a y1 adjacent to 167, 233 pick a
vertex, say 23801, that has not been touched before (at any stage, only a
finite number of points have been touched) and join it to 167, 233 and nothing
else. There are two very nice properties of this construction. First, Gα is a
model of Tα. (As you might expect, these minimal extensions are t-generic for
all t.) Second, and quite surpisingly, Gα is unique. That is, it does not depend
on the ordering of the witness demands nor on the choice of new points to
satisfy them. These graphs Gα seem quite intriguing objects worthy of study
simply as countable graphs. For any finite set X of vertices, let us define the
closure cl(X) as the union of the t-closures of X over all t, noting this is not
a first-order concept. In this procedure at some finite time all vertices of X
have been touched. Let Y be the value of cl(X) at that moment. After this
time, all extensions of Y are via safe extensions and one can show that cl(X)
remains the same. That is, in Gα all finite sets have finite closure.

The two models created are different, since in the first there is an x with
cl({x}) infinite, while in the second there is no such x.

4.8 A Dynamic View

We have seen that for fixed irrational α ∈ (0, 1), any first-order A holds almost
surely or almost never in G(n, n−α). Now we consider A fixed and vary α –
thinking roughly of the evolution of the random graph as we consider p = n−α

with α decreasing from one to zero. To study that evolution, we define

fA(α) = lim
n→∞ Pr[G(n, n−α) |= A]

To avoid the problems at rational α, we simply define the domain of fA to
be the irrational α ∈ (0, 1). Our goal is to describe the possible functions
fA. Note that fA(α) = 1 when A is in the theory Tα, otherwise fA(α) = 0.
We have given an explicit description of the theories Tα. In this sense the
function fA is described independently of probabilistic calculation. We seek
to understand the relationships within the continuum of theories Tα.

We begin with a continuity result. Fix A and the irrational α. We claim
that fA(β) is constant in some interval (α− ε, α+ ε) around α. Suppose A is
in Tα (otherwise, take ¬A). Then A follows from a finite number of axioms
of Tα. These in turn depend on notions of dense and sparse rooted graphs,
which depend on whether v − eα is positive or negative. For any particular
v, e, whatever the sign of v − eα, that sign remains constant in some interval
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around α. The finite number of axioms leads to a finite number of pairs v, e
and so all signs remain constant in some interval. For β in that interval, Tβ
has these same axioms and so A is in Tβ. (It is known, however, that the
theories Tα are all different. Between any two α, α′ lies a rational a/b and it
is known that there is a graph H such that the existence of a copy of H has
a threshold function n−a/b.)

The discontinuities of fA must therefore come at the rational a/b ∈ (0, 1).
We define the spectrum Sp(A) to be those rational points of discontinuity.
The classical theory of random graphs gives natural examples. Existence of a
K4 has a spectrum {2/3}. Existence of a K5 has a spectrum {1/2}. We can
put these together: “There exists a K4 and there does not exist a K5” to give
a spectrum {2/3, 1/2} – here as G evolves Pr[A] starts near zero, jumps to
one at n−2/3 when K4’s appear, and jumps back down to zero at n−1/2 when
K5’s appear. With some technical work, it is not difficult to get any finite set
of rationals in (0, 1) as a spectrum in this way. This author once conjectured
that all spectra were such finite sets. That proved not to be the case.

4.9 Infinite Spectra via Almost Sure Encoding

Here we shall describe a first-order A with an infinite spectrum. The central
idea will be to take a second-order sentence and give it an almost sure
encoding in the first order language.

For definiteness, we shall work near α = 1
3 . By a K3,k is meant a set

x1, x2, x3; y1, . . . , yk with all yj adjacent to all three x’s. Basic random graph
theory gives that the sentence “There exists a K3,k” has a threshold function
n−1/3−1/k. (There are e = 3k edges and v = 3 + k vertices and (∅,K3,k) is
sparse and safe if and only if v − eα > 0.) Let N(x1, x2, x3) denote the set of
common neighbors of x1, x2, x3. Then, for 1/3 + 1/k > α > 1/3 + 1/(k + 1),
the maximal size |N(x1, x2, x3)| is k. Consider then the property, call it A∗,
that the maximal size |N(x1, x2, x3)| is even. This would have all values
1/3 + 1/k as spectral points. It is not possible to write this property in
the first-order language. We shall, however, give an almost sure encoding, a
first-order sentence that almost surely has the same truth value as A∗.

Let us look in the second-order world. How can we say that a set S (which
will be N(x1, x2, x3) in our application) has even size. We write

EV EN(S) : ∃R∀x¬R(x, x) ∧ ∀x,yR(x, y) ↔ R(y, x) ∧ ∀x∈S∃!y∈SR(x, y).

That is, there exists an areflexive symmetric binary relation on S (i.e. a
graph) which is a matching – each vertex has precisely one neighbor. How
can we say that S is bigger than or equal in size to T ? Similarly, we write
BIGGER(S, T ), that there exists an areflexive symmetric binary relation R
that yields an injection from T − S to S − T . For every y ∈ T − S, there is a
x ∈ S−T with R(y, x), and we do not have R(y1, x) and R(y2, x) for distinct
y1, y2 ∈ T − S and x ∈ S − T . Now we can write A∗ in second order:
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A∗ : ∃x1,x2,x3EV EN [N(x1, x2, x3)]∧

∧∀z1,z2,z3BIGGER[N(x1, x2, x3), N(z1, z2, z3)].

Now for the almost sure encoding. We define the first-order ternary
predicate (considering u as a variable symbol)

Ru(x, y) := ∃v[v ∼ x ∧ v ∼ y ∧ v ∼ u],

that u, x, y have a common neighbor. Our basic idea (though it will need
modification) is to replace the second-order ∃R with the first-order ∃u and
then to replace all instances of the binary R with the new binary Ru.

Lemma 4.9.1 (Representation Lemma). For any s and any symmetric
areflexive R on 1, . . . , s that holds for l pairs with l < k/3,

∀x1,...,xs∃u
∧

1≤i<j≤s
(Ru(xi, xj) ↔ R(i, j))

is a theorem of T = Tα for all 1/3 + 1/k > α > 1/3 + 1/(k + 1).

Consider the rooted graph, call it (S,H), with roots 1, . . . , s and nonroot
u, and then, for each 1 ≤ i < j ≤ s a nonroot vij with edges from vij to i, j, u.
(S,H) has v = 1 + l nonroots and e = 3l edges. Our bound on l assures that
v − eα > 0 so that (S,H) is sparse, and some easy combinatorial work shows
that it is safe as well. In Tα we have the 1-Generic Extension axiom for (S,H).
For all x1, . . . , xs there exists a u and vij having the above edges and no more,
so that, when R(i, j) holds, we do have Ru(xi, xj). Suppose now that ¬R(i, j);
can u, xi, xj have a common neighbor? A common neighbor to three vertices
is a rigid extension in our range α > 1/3 so this would violate 1-genericity.

We outline a second argument more for those readers in the random graph
community. Set p = n−1/3−ε so that 1/k > ε > 1/(k + 1). Any particular
Ru(x, y) holds with probability roughly np3 ∼ n−3ε, that being the expected
number of common neighbors. Say u is a witness if Ru(x, y) holds for the l
needed pairs. Then u would be a witness with a probability of roughly n−3lε.
There are n potential witnesses, so the expected number of witnesses would be
roughly n1−3lε. As 3lε < 1, this expected number goes to infinity, and almost
surely for every choice of the x’s there is one. There are a number of ques-
tions here (for one thing, u, u′ being witnesses are no longer fully independent
events) that need to be fleshed out, but this can be turned into a full proof.

We have a small technical problem. We want to say EV EN(S), where
S = N(x1, x2, x3) has at most k elements, by saying that there is a matching
R. Such an R would have perhaps k/2 edges while our Representation Lemma
only gives us Ru with at most k/3 edges. We puff up the Representation
Lemma by replacing ∃R with ∃u1,u2 and replacing R with Ru1 ∨ Ru2 . Now
we represent all R with up to just fewer than 2k/3 edges. To write it out
in full, “N(x1, x2, x3) is even” is replaced by “there exist u1, u2 such that
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for all y adjacent to x1, x2, x3 there exists a unique y′ �= y adjacent to
x1, x2, x3 with either y, y′, u1 or y, y′, u2 having a common neighbor”. Sim-
ilarly, BIGGER(S, T ) may require an injection R of k edges. We therefore
replace ∃R with ∃u1,u2,u3,u4 and R with Ru1 ∨ Ru2 ∨ Ru3 ∨ Ru4 . With this,
BIGGER(N(x1, x2, x3), N(x′

1x
′
2x

′
3)) becomes a first-order predicate. We

have given an almost sure encoding that transforms the second order A∗

into a totally first-order (though hardly natural to those in graph theory!)
sentence A which has the desired infinite spectrum.

The notion of an almost sure encoding is an intriguing one and will appear
several more times. One is given a property P in some large language L+

and one wishes to find (or, in one example later, to disprove the existence of)
a sentence A in a given smaller language L which is an almost sure encoding
of it. By this we mean that the probability of P and A differing in truth
value goes to zero as the model size goes to infinity. Of course, one also has
to fix the probability measure, in our case G(n, p(n)) with some particular
p(n). Hella, Kolaitis and Luosto have called two languages L,L′ “almost
everywhere equivalent” if for every P in one language there is an A in the
other where, as above, the probability of P,A differing in truth value goes to
zero as the model size goes to infinity. One particularly intriguing problem
they give involves G(n, p) with p = 1/2: Is monadic existential second-order
logic almost everywhere equivalent to monadic universal second-order logic?
They conjecture that the answer is no, but it does seem difficult to show
negative results about the existence of an almost sure encoding.

4.10 The Jump Condition

We have already mentioned that the theories Tα are all distinct. However,
if we fix the quantifier depth u of the sentences we are examining, the values
α fall into definite intervals. Let us recall the sequence t0, . . . , tu from Sect.
4.5. We had t0 = 0, t1 = 1, and ti+1 = max[ti, �(u − i)ε−1�] where ε was the
minimum value of v−1(eα−v) over all integers v, e with v ≤ ti and v−eα ≤ 0.
We may try to define this sequence for rational α as well. It does not always
work. Take, for example, u = 5 and α = 1/3 + 10−6. With t1 = 1, we take
v = 1 and e = 3 to give ε = 3 · 10−6. This yields a t2 of roughly 4

3106, which
is bigger than the numerator 106 + 1 of α. Now, in trying to define t3, we
have v, e with v ≤ t2 and v − eα = 0, so that ε = 0 and the process explodes.

This is not a surprise, the zero-one law is not supposed to hold for rational
α. But it will hold on sentences of quantifier depth u if the rational α is not
too rational. To be precise, let XPLu denote the set of rational α for which
the sequence t0, . . . , tu is not well defined, together (a technical point) with
those α for which the sequence is well defined and α has a numerator of at
most tu. For α �∈ XPLu we do get a zero-one law. It turns out that XPLu
is a well-ordered set under the ordering >. (There is a lot of pretty number
theory involved in studying XPLu, which is quite reminiscent of continued
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fractions. The example above actually shows that 1/3 + 1/m ∈ EXP5 for all
large integers m, so that EXP5 is infinite. Here 1/3 is an accumulation point
of EXP5 but only from larger values.) That is, for every a/b ∈ XPLu (except
the smallest) there is an (a/b)− ∈ XPLu which is the biggest element of
XPLu smaller than a/b. Then XPLu splits the unit interval into intervals I
from (going down) a/b to (a/b)−. (We include the I from the smallest value
of XPLu to zero.) Inside each interval, the sequences t0, . . . , tu are the same.
Further, the truth value of any A of quantifier depth u remains the same as
α ranges over such an I. (Basically, one only needs notions of safe and dense
rooted graphs up to v = tu, and these notions are the same for all α in the
interval.) To rewrite this as a condition on possible fA:
Jump Condition. If f = fA for some first-order A then there is a u such that
f is constant on each interval I defined by the splitting set XPLu.

4.11 The Complexity Condition

For α ∈ (0, 1] rational, let us define gA(α) to be the limiting value of fA(α−ε)
as ε approaches zero from above. Since EXPu is well ordered under >, this is
well defined. Indeed, for α ∈ EXPu this gives the value of fA on the interval
from α to the next α−. Since the intervals I defined above partition the unit
interval, gA will determine fA.

For α ∈ (0, 1], we define a theory T−
α . This will be the limiting theory of

the Tα+ε as ε approaches zero from above. Recall that the splitting into dense
and sparse rooted graphs was not a strict dichotomy for α rational, because
of the possibility that v − eα = 0. In T−

α , we simply consider such rooted
graphs as sparse, as that is their status in Tα+ε with ε positive. This can be
shown to give a complete theory, and gA(α) = 1 precisely when A lies in this
theory. We have a most surprising complexity condition on the functions gA.
Complexity Condition:

{0a1b : A ∈ T−
a/b} ∈ PH.

To see this, let us fix the quantifier depth u and consider how difficult it
is to find if A ∈ T−

a/b as a function of the denominator b. We can, as before,
define the sequence t0, . . . , tu. Here, having defined ti, we define ε by only
looking at those v, e with v ≤ ti and v − e(a/b) strictly negative. But then
v − e(a/b) has a denominator of at most tib and so ε ≥ (tib)−1. Other terms
(considering u fixed) supply bounded factors; basically ti goes up by at most
a factor of b as i increases. That is, ti = O(bi).

We can write any A of quantifier depth u in the form

A : Qx1Qx2 · · ·QxuP (x1, . . . , xu)

where Q is either ∃ or ∀, very possibly taking different values at different
times, and P is a Boolean expression composed from the atoms xi = xj and
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xi ∼ xj . The truth value of A in T−
a/b can now be turned into a game between

two players. We shall call them Spoiler and Duplicator as before, though this
game is not the Ehrenfeucht game. Duplicator’s object is to show that A is
a consequence of T−

a/b, and Spoiler tries to show that it is not.

The Game Board. The game board has levels 0, 1, . . . , u. Each level has a
finite set of positions. At level 0 are the possible values of cl0(x1, . . . , xu).
(Recall that these are determined by the graph on {x1, . . . , xu} and, to
be formally correct, the equalities amongst the xi.) At level i are the
possible values of the ti-closure of x1, . . . , xu−i. When i = u, the top
level, there is only one possible tu-closure of ∅, namely ∅, so there is only
a single position.

The Initial Position. The top-level position ∅.
The Winning Final Positions. The 0-position determines the truth value

of P (x1, . . . , xu) – we call a 0-position winning if P is true, otherwise we
call it losing.

The Permitted Moves. All moves go down one level. Let H and H ′ be
positions on the levels i and i − 1 respectively. Moving from H to H ′

is permitted if and only if, in T−
a/b, the following is a theorem: Given

any x1, . . . , xu−i with ti-closure H , there exists an xu−i+1 such that the
ti−1-closure of x1, . . . , xu−i, xu−i+1 is H ′. We have argued that the Tα
are complete via the Ehrenfeucht game, but it could have been done
syntactically. The key result is that in Tα, for any positions H,H ′ on the
levels i, i − 1, either the above is a theorem or there is a theorem that
says: Given any x1, . . . , xu−i with ti-closure H there does not exist an
xu−i+1 such that the ti−1-closure of x1, . . . , xu−i, xu−i+1 is H ′.

The Rules of the Game. There are u rounds. In the ith round when xi is
quantified existentially (i.e. Q = ∃) it is Duplicator’s move, and when it
is quantified universally it is Spoiler’s move. In either case, the permitted
moves are given above so that the position moves through the levels and at
the end of the u rounds is on the bottom level. Those positions have been
designated winning and losing, and Duplicator wins or loses accordingly.

This game description works for any Tα or T−
a/b. But with T−

a/b, we can
bound the game complexity by noting that each position is given by a graph
(together with designated vertices) of size polynomial in b, certainly O(bu),
and hence can be described by a sequence of bits of length O(b2u). Therefore
winning the game has a complexity in the polynomial hierarchy at level u.

Well, not quite. We also have to examine whether a move H to H ′ is per-
missible. To “prove” that the move is permissible, Duplicator draws a picture
of H and H ′. When the move is Inside she simply designates the new move
xu−i+1 and the set H ′ which is the new closure. When the move is Outside,
she states which vertices of H are still in H ′ plus she adds the new vertices
(called NEW in the completeness proof) with all edges and a designated
vertex xu−i+1. She further lists the sequence of rigid extensions that give



4.12 Nonconvergence via Almost Sure Encoding 249

the ti+1-closure. All this can be done with a polynomial-length string. Now
Spoiler is allowed a polynomial-length string to show that Duplicator has been
duplicitous. He can show that one of the rigid extensions is not really rigid by
nailing down some vertices so that the extension becomes sparse. He can show
(in the Outside case) that NEW is not really safe over H by demonstrating
a dense subextension. Finally, he can show that the ti+1-closure is more than
H ′ by exhibiting, inside Duplicator’s picture of H ∪ H ′, a dense extension.
(There is a theorem that dense extensions must contain rigid subextensions,
so he need not show that his extension is rigid.) This shows that the
permissibility of a move is in the second level of the polynomial heirarchy.

Remarkably, the Jump Condition and the Complexity Condition charac-
terize the possible functions fA. We have seen, albeit in outline form, that
these conditions are necessary. That they are sufficient is technically quite
challenging. In personal communication, an argument for the sufficiency has
been outlined by Gábor Tardos.

4.12 Nonconvergence via Almost Sure Encoding

Let us turn to the random ordered graph G<(n, p). The underlying model is
still a vertex set Ω of size n and a probability space of graphs on Ω where
each pair of vertices is adjacent with independent probability p. In addition,
the set Ω is totally ordered by a built-in relation <. This relation is part
of the language. For convenience, we can assume Ω = {1, . . . , n}. Now 1 is
uniquely defined as that element with nothing less than it, and 2 is uniquely
defined as that element with only 1 less than it. We can that express 1 ∼ 2
by the first order sentence

∃x∃y(x �= y) ∧ (x < y) ∧ [∀zz < y → z = x] ∧ x ∼ y.

This event (for n ≥ 2) has probability p. We shall write y = x + 1 if x < y
and there is no z in between them. When y �= 1 we write x = y − 1 when
y = x + 1. Note, however, that addition and subtraction are in general not
defined in this language.

We shall restrict our attention to p = 1/2. The example above shows that
there is no zero-one law, that Pr[A] need not converge to zero or one. We aim
for the following stronger negative result of Compton, Hansen, and Shelah.

Theorem 4.12.1. There is an A for which limn→∞ Pr[G<(n, 1/2) |= A] does
not exist.

The central idea is to encode arithmetic on an ordered set S, first using
second-order language and then in first-order with an almost sure encoding.
The second-order encoding is standard. We say that on S there exist ternary
relations +(x, y, z) and ∗(x, y, z) (with the interpretations x + y = z and
x · y = z, respectively) such that the following apply:
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1. +(x, 1, z) if and only if z = x + 1 as described above.
2. When y �= 1, +(x, y, z) if and only if +(x, y − 1, z − 1)
3. ∗(x, 1, z) if and only if z = x
4. When y �= 1, ∗(x, y, z) if and only if there exists a u with ∗(x, y − 1, u)

and +(x, u, z).

When this occurs, we say S is arithmetizable. Now for the almost sure encod-
ing. For c ≤ d, we write Rc,d(x, y, z) if x, y ≤ z and (critically) there exists
an e with c ≤ e < d such that e is adjacent to x, y, z and no other elements of
S. We say S is first-order arithmetizable if there exist c, d and c′, d′ such that
Rc,d, Rc′,d′ have the properties of “plus” and “times” enumerated above. For
our specific purposes we shall consider only S of the form {1, . . . , u} though
one could give similar results for more general S with a little more technical
work. We make all logarithms to base 2 in what follows, for definiteness.

Lemma 4.12.2 (Representation Lemma). Let u ≤ 0.9 log1/3 n. Then
almost surely there exist c ≤ d such that Rc,d is the ternary relation + on
{1, . . . , u} and also c ≤ d such that Rc,d is ∗.

Let + have s instances. Observe that s < u2. Consider a pair c, d with
u < c and d = c + s. We call c a witness if Rc,d is indeed + on {1, . . . , u}
There is an arrangement (indeed, many such) of the edges between {1, . . . , u}
and {c, . . . , d − 1} such that c is a witness. This occurs if us pairs have a
particular set of adjacencies (and no more), and so has a probability 2−us of
occurring. There are ∼ n potential witnesses c so that the expected number
of witnesses is bigger than roughly n2−us. We have bounded u so that
us < u3 < (0.9)3 logn, and so this expected number goes to infinity. Some
technical work shows that almost surely there is a witness. (Actually, the
technical work isn’t so difficult here. We can pick ∼ c′n log−1/3 n values c so
that the intervals [c, d) are disjoint, and so the events that c is a witness are
mutually independent over those different c’s.) Representing ∗ is the same.
Indeed, with further technical work (perhaps modifying the bound on u), one
could almost surely represent every ternary, even k-ary, relation R.

Similar arguments, which we exclude, show that when u > C log1/3 n
(where C is a computable absolute constant) the Representation Lemma
almost surely fails and {1, . . . , u} is not first-order arithmetizable. For
definiteness, let us take C = 900. Now the maximal u such that {1, . . . , u} is
first-order arithmetizable is determined up to a factor of 1000.

Once we have arithmetized {1, . . . , u} we are off to the races. We can say
that u is prime, that u is a Fermat prime; there is a large spectrum here.
Certainly we can talk about log u.

Now we can give our first-order sentence A: There exists u such that

1. {1, . . . , u} is first-order arithmetizable
2. {1, . . . , u + 1} is not first-order arithmetizable
3. log u modulo 40 is one of 1, 2, . . . , 20.
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Why does this work? The size n of the model almost surely determines
u up to a factor of 1000 and so logu is almost surely determined up to an
additive term of 10. For some n, this range of log u will all be in 1, . . . , 20
modulo 40, while for other n this range will all be in 21, . . . , 39, 0 modulo 40.
This gives infinite subsequences of n on which our sentence has a limiting
probility of one and zero respectively, the worst kind of nonconvergence.

Almost sure encoding can be used to show nonconvergence by encoding
arithmetic in other contexts. We shall examine, in outline form, G(n, n−1/4).
Note that we do not include < as a built-in predicate here. We arithmetize
a set S in the second-order language by saying that there exists a binary
< and ternary +, ∗ with the desired first-order properties. For u �∈ S, we
define a ternary Ru on S, letting Ru(x, y, z) be the first order property
that u, x, y, z have a common neighbor. Also, for u, x �∈ S we have the
binary relation Ru,x(y, z) = Ru(x, y, z). (We actually need further technical
work here in that such relations are symmetric while < is not.) We say
that S is first-order arithmetizable if there exist u1, u2, u3, u4 such that
Ru1,u2 , Ru3 , Ru4 play the role of <,+, ∗. At p = n−1/4, any four vertices have
probability (1− p4)n−4 ∼ e−1 of having no common neighbor. Basically, each
Ru acts like an independent (this part takes some technical work) random
ternary predicate with a probability of occurance 1 − e−1. Key here is that
both 1 − e−1 and e−1 are bounded away from zero. Letting S have size s, a
given u witnesses a particular ternary R with probability at least e−t, where
t =

(
s
3

)
is the number of triples. The expected number of witnesses is at

least ne−t. For s ≤ ln1/3 n this goes to infinity and one can show that almost
surely +, ∗, < are represented. We cannot quantify over all subsets S in the
first-order language but instead look at sets S = N(x1, x2, x3, x4), the set of
common neighbors of x1, x2, x3, x4. One can show that there are such S’s of
all sizes up to roughly lnn/ ln lnn. On sets S, T of size O(ln1/3 n) we can say
BIGGER(S, T ) in the first-order language (as done in Sect. 4.9) by saying
there exist u1, u2 such that Ru1,u2 gives an injection from T to S. It is then
a first-order property of x1, x2, x3, x4 that S = N(x1, x2, x3, x4) is arithmeti-
zable but there is no “bigger” arithmetizable S′ = N(x′

1, x
′
2, x

′
3, x

′
4). Such an

S would almost surely have a size Θ(ln1/3 n). But when S is arithmetizable,
we can say a wide variety of things about its size u. In particular, we get a
nonconvergent sentence by saying that there exist x1, x2, x3, x4 such that the
size u = |N(x1, x2, x3, x4)| has log u between 1 and 20 modulo 40.

4.13 No Almost Sure Representation of Evenness

In this section we restrict ourselves to the random ordered graph G<(n, p)
with p = 1/2. We set, for any property A,

fA(n) = Pr[G<(n, p) |= A]

We shall outline the proof of the following result of Saharon Shelah.
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Theorem 4.13.1. For any first-order A

lim
n→∞ fA(n + 1)− fA(n) = 0.

This provides an interesting counterpoint to the Compton, Hansen, and
Shelah result discussed earlier. There are A’s for which fA(n) does not
converge, but it cannot oscillate back and forth too fast. There is a very
nice corollary: There is no first-order sentence that provides an almost sure
representation for the property that the number n of vertices is even. For such
an A would have fA(2n) → 1 and fA(2n + 1) → 0, which would contradict
the slow oscillation of Shelah’s Theorem. We find, in general, that it is quite
difficult to prove negative results about almost sure representation, and in
this context Shelah’s result is particularly striking.

We link G<(n, p) and G<(n + 1, p) by the following procedure. Take a
random graph on 2n + 1 ordered vertices, and call it G ∼ G<(2n + 1, p).
Restricting to a random subset S of size precisely n gives G(n), with a
distribution that is that of G<(n, p). Restricting to a random set S of size
precisely n + 1 similarly gives G(n+1) ∼ G<(n + 1, p). We thus have

fA(n + 1)− fA(n) =
∑

G

μ(G)
[
Pr[G(n+1) |= A]− Pr[G(n) |= A]

]

where μ(G) is the probability that G<(2n+1, p) is G. Shelah actually showed
that for every G on 2n + 1 ordered vertices

∣
∣
∣Pr[G(n+1) |= A]− Pr[G(n) |= A]

∣
∣
∣→ 0

Fix G and a property A. Consider the property that G restricted to S
satisfies A as a function of S. For example, a sentence such as

∃x∀y∃zz ∼ y ∧ y ∼ x

would turn into

∃x(x ∈ S) ∧ [∀y(y ∈ S) → ∃z(z ∈ S) ∧ (z ∼ x) ∧ (z ∼ y)] .

Such a property A∗ is a Boolean function of the variables x ∈ S for
x = 1, . . . , 2n + 1. Here we turn to circuit complexity – the function may
be represented by a circuit with primitives x ∈ S. Each ∃x is an OR gate with
fan-in 2n+1 (that is, all x), and each ∀x is an AND gate also with fan-in 2n+1.
The statements x ∼ y and x < y then have definite truth values and so do not
appear in the circuit. A∗ is then represented by a bounded-depth polynomial-
size circuit. It is a deep theorem of circuit complexity (due originally to
Razborov) that such a circuit cannot determine majority – that is, cannot be
true if and only if at least half of the 2n+1 inputs are true. Some further tech-
nical work shows that no such circuit can distinguish between a random n and
n+ 1 inputs being true - that the difference in the probability that the circuit
yields true in the two experiments must tend to zero. This gives Shelah’s result.
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4.14 The Ehrenfeucht Game

The Ehrenfeucht game is a powerful and very general method for showing
that two models have (or do not have) the same first-order properties. We
consider first the specific example of graphs. Let G,H be two graphs and let
t be a positive integer. We describe the Ehrenfeucht game EHR(G,H; t).

The Board A copy of G and a copy of H on disjoint vertex sets.
The Players Spoiler and Duplicator.
The Play There are t rounds. In the i-th round Spoiler goes first. He selects

either a vertex from G or a vertex from H . Then Duplicator goes. She
selects a vertex from the graph that Spoiler did not select from. We let
xi denote the vertex selected from G in the ith round and yi the vertex
selected from H in the ith round, regardless of who selected them. We
note that Spoiler’s choice of which graph to choose from can change from
round to round.

The Winner Duplicator wins if and only if the map from xi to yi preserves
adjacency and equality. That is, xi, xj are adjacent in G precisely when
yi, yj are adjacent in H . Further, xi = xj precisely when yi = yj.

We note that when the graphs both have at least t vertices, there is no point
in Spoiler selecting an xj equal to a previous xi, as then Duplicator would
simply select yj = yi. Hence we could add the requirement that Spoiler always
picks a new vertex. Then Duplicator would also always pick a new vertex.

Theorem 4.14.1. Duplicator wins EHR[G,H; t] if and only if G,H have the
same truth values on all first-order sentences of quantifier depth t.

We illustrate this fundamental result with an example. Suppose G has an
isolated vertex and H does not. The property ∀x∃yx ∼ y has quantifier depth
t = 2. Spoiler selects the isolated vertex x1 ∈ G and Duplicator must select
some y1 ∈ H . As y1 is not isolated, Spoiler moves over to H and selects a
y2 ∈ H adjacent to y1. Now Duplicator is stuck, there is no x2 ∈ G adjacent
to x1 for her to select.

As an immediate corollary, G,H are elementarily equivalent if and only if
Duplicator wins EHR[G,H; t] for every positive integer t. Note, however, that
this is not the same as Duplicator winning a game with an infinite number
of moves.

Corollary 4.14.2. Let T be a consistent theory with no finite models. Then
T is complete if and only if, for every two countable models G,H of T and
every positive integer t, Duplicator wins EHR[G,H; t].

If T is complete, the models G,H are necessarily elementarily equivalent
so that Duplicator wins. If T is not complete, there is a sentence A such that
T + A and T + ¬A are both consistent and so they have countable models
G,H . Letting t be the quantifier depth of A, Spoiler would win EHR[G,H; t].
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Let us generalize to first-order languages (we could go even further) with
a finite number of relation symbols R of varying arity. This would include the
ordered graph (with < as well as adjacency) or the simple unary language
(with only one unary U and equality) of Sect. 4.1. Let G,H be two models of
the language. Then EHR[G,H; t] is played as described above, with Spoiler
and Duplicator selecting x1, . . . , xt ∈ G and y1, . . . , yt ∈ H . For Duplicator to
win, she now has to preserve all the relations. That is, let R be any relation
symbol of arity l, say. Then R(xi1 , . . . , xil) must have the same truth value
as R(yi1 , . . . , yil) for every choice of i1, . . . , il from 1, . . . , t.

4.15 About the References

Among the other surveys of this area, we recommend those of Compton [3],
Winkler [26], Lynch [15], and this author [23]. The Ehrenfeucht game was
first given in [5]. (It was essentially found in earlier work by Fräıssé and is
sometimes referred to as the Ehrenfeucht–Fräıssé game.) The classic zero-one
law for random graphs with p = 1/2 (often called the uniform distribution)
is due to Glebskii et al. [8] and Fagin [7]. The classic paper that began the
theory of random graphs was that by Paul Erdős and Alfred Rényi [6]. The
basic text on random graphs is that by Bollobás [2].

The zero-one Law for p = n−α appeared first in [17]. An approach using
the Ehrenfeucht game is given in [21]. A syntactic proof of the completeness
of the Tα is given in [22]. An examination of the countable models of Tα is
given in [20]. The text [1] also includes some of this material.

In this brief chapter we have examined only a few examples of random
structures. Among the many others we shall mention [14] on unary func-
tions, [18, 24] on random unary predicates with order (considerably different
from sect. 4.1!), and [11] on random partially ordered sets. �Luczak and
Shelah [12] have considered an interesting random graph model on vertex set
1, . . . , n where the adjacency probability between i and j depends on |i− j|.

While we have restricted ourselves here to first-order logic there are a
number of papers considering stronger logics. Generally, these give negative
results that a zero-one law or convergence does not always hold. A nice
example is given by Kaufmann and Shelah [10], giving a nonconvergent
second-order sentence on G(n, p) with p = 1/2. Many such results, including
those on the random ordered graph given in the text above, can be found
in [4]. Shelah [16] has shown that, on the random ordered graph, no first order
sentence can almost surely encode the evenness of the model. Hella, Kolaitis,
and Luosto [9] have considered the general problem of almost sure equivalence.

Spencer [19] has examined the random graph theory of extension state-
ments in some detail. �Luczak and Spencer [13] have used some detailed random
graph theory to give a near characterization of those p = p(n) (not just those
of the form n−α) for which the zero-one law holds. Spencer and Tardos [25]
have given the necessary conditions on the function fA(α) defined in the text.
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5

Embedded Finite Models and Constraint
Databases

Leonid Libkin

5.1 Introduction

The goal of this chapter is to answer two questions:

1. How does one store an infinite set in a database?
2. And what does it have to do with finite model theory?

Clearly, one cannot store an infinite set, but instead one can store a finite
representation of an infinite set and write queries as if the entire infinite set
were stored. This is the key idea behind constraint databases, which emerged
relatively recently as a very active area of database research. The primary
motivation comes from geographical and temporal databases: how does one
store a region in a database? More importantly, how does one design a query
language that makes the user view a region as if it were an infinite collection
of points stored in the database?

Finite representations used in constraint databases are first-order formu-
lae; in geographical applications, one often uses Boolean combinations of linear
or polynomial inequalities. One of the most challenging questions in the devel-
opment of the theory of constraint databases has been that of the expressive
power: what are the limitations of query languages for constraint databases?
These questions were easily reduced to questions about the expressiveness of
query languages over ordinary finite relational databases, with the additional
condition that databases may store numbers and arithmetic operations may
be used in queries. This is exactly the setting of embedded finite model theory.

It turned out that the classical techniques for analyzing the expressive
power of relational query languages no longer worked in this new setting.
In the past several years, however, most questions about the expressive
power have been settled, by using new techniques that mix the finite and
the infinite, and bring together results from a number of fields such as model
theory, algebraic geometry, and symbolic computation.

In this chapter we present a variety of results on embedded finite models
and constraint databases. The core part of this chapter deals with new



258 5 Embedded Finite Models and Constraint Databases

techniques for analyzing expressive power in the mixed setting. These
techniques, which come in the form of collapse results, reduce many ques-
tions over constraint databases or embedded finite models to the classical
finite-model-theory setting.

5.1.1 Organization

In Sect. 5.2, we describe the setting of embedded finite models, and explain
connections with relational database theory. Sect. 5.3 contains a brief
introduction into constraint databases.

Sect. 5.4 gives an overview of collapse results; it also defines various
semantics of logical formulae, and introduces the notion of genericity. Sections
5.5 and 5.6 describe collapse results for various semantics and various notions
of genericity. In Sect. 5.7 we look into connections between collapse results
and various model-theoretic notions, and in Section 5.8 we describe a close
relationship between collapse results and the notion of the VC dimension,
which is of interest in model theory and machine learning. Sect. 5.9 presents
results on the expressive power of query languages over constraint databases
that use two different techniques: reduction to the case of embedded finite
models, and the analysis of the topological structure of constraint databases.

Sections 5.10 and 5.11 deal with topics motivated by database consid-
erations. Sect. 5.10 studies query safety, which means guaranteeing finite
output for relational databases, and some geometric properties for constraint
databases. Section 5.11 briefly analyzes the problems of aggregate operators
and higher-order features in constraint databases.

5.2 Relational Databases and Embedded Finite Models

In classical finite model theory, we work with finite structures and deal with
sentences such as

∃x∃y∀z(¬E(z, x) ∨ ¬E(z, y))

which says that the diameter of an (undirected) graph with edge-set E is at
least 3. In embedded finite model theory, we still work with finite structures
but deal with sentences like

∃x∃y (E(x, y) ∧ (y = x · x + 1))

which says that there is an edge (x, y) in a graph with y = x2 + 1. It is
assumed here that the nodes of a graph come from some domain that is
equipped with arithmetic operations such as addition and multiplication; for
example, the nodes could be natural, rational, or real numbers.

To illustrate the difference, consider as an example a relational signature
of directed graphs, consisting of a single edge-predicate E. Suppose we want
to find the composition of E with itself; that is, to find pairs (a, b) in a
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directed graph that are connected by a path of length at most 2. This is done
by writing a formula

ϕ(x, y) ≡ ∃z (E(x, z) ∧ E(z, y)).

This formula gives us a conjunctive query; it can be written in a variety of
relational database languages: as

q(x, y) :- E(x, z), E(z, y)

in Datalog, or
π#1,#4 (σ#2=#3 (R ×R) )

in relational algebra, or

SELECT R1.Source, R2.Destination
FROM R R1, R R2
WHERE R1.Destination=R2.Source

in SQL.
Now suppose that the nodes of the graph are natural numbers, and we

are only willing to consider paths E(x, z), E(z, y) in which x, y, z are related
by some condition: for example, x + y = z. It is straightforward to rewrite
the above query in first-order logic as

ϕ′(x, y) ≡ ∃z (E(x, z) ∧ E(z, y) ∧ (x + y = z)),

or in SQL as

SELECT R1.Source, R2.Destination
FROM R R1, R R2
WHERE R1.Destination=R2.Source

AND R1.Source + R2.Destination = R2.Source

But what about relational algebra? The most natural way seems to be

π#1,#4 (σ(#2=#3)∧(#1+#4=#2) (R ×R) );

however, relational algebra does not allow arithmetic operations in its
selection predicates.

At the first glance, this is easy to remedy: just add arithmetic predicates
to the selection conditions. While this seems to be easy, there appear to be
two serious problems.

Expressive power. We know that first-order logic, and thus relational algebra,
cannot express most recursive and counting queries, such as the transitive
closure of a relation or the parity of a set. However, this was proved under
the assumption that only equality and order comparisons are allowed on
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nodes of graphs. How does one prove the analogous result (if it is true)
if nodes are numbers, and arithmetic operations are used in formulae?

It appears that the standard techniques for proving expressivity
bounds are not directly applicable in this case. Tools based on locality
cannot tell us anything meaningful, owing to the presence of order; 0-1
laws are inapplicable altogether, and games become unmanageable as
the duplicator must maintain partial isomorphism not only for the graph
edges but also for all the arithmetic predicates as well. It thus seems
that entirely different techniques are needed to solve the problem of the
expressive power in this setting.

Query Evaluation. It is clear that the query ϕ′ above can be evaluated by the
usual bottom-up technique: we first construct R × R, then select all the
tuples (a, b, c, d) with b = c and a + d = b, and then project out the first
and the last components. However, what if the condition is not x+ y = z
but that z is a perfect square? The query will then be rewritten as

ϕ′′(x, y) ≡ ∃z (E(x, z) ∧ E(z, y) ∧ (∃u (z = u · u))),

and the selection condition will have to evaluate ∃u (z = u · u) with u
ranging over the infinite set of natural numbers! In this particular case,
it appears that the evaluation is possible: one does not have to check all
u ∈ N, but only u ≤ z. However, one can have more complex conditions,
for example ∃x1 . . . ∃xk p(x1, . . . , xk) = 0, where p is some polynomial
with integer coefficients. The truth value of this sentence cannot be
determined algorithmically, as this would imply solving Hilbert’s tenth
problem. Thus, it is not always possible to evaluate queries with arith-
metic conditions. In general, one would encounter this problem in dealing
with any undecidable theory.

To give another example of potential problems with query evaluation,
consider the following query ψ(x), saying that x2 belongs to S:

∃y S(y) ∧ (x · x = y).

This query is clearly evaluable, but its output depends on whether one
works with real numbers, or integers; for example, over the reals, the
output is {−

√
a,
√
a | a ∈ S}, but over the integers one has to select

integers from this set. Thus, the output is different depending on the
range of the quantifier ∃y: whether it is R or Z. Also, it is not immediately
clear how a query processor can look at the query above and transform
the declarative specification involving a quantifier over an infinite set into
a finite evaluable query such as {−

√
a,
√
a | a ∈ S}.

To deal with these problems, we now have to give a formal definition
of the setting. Intuitively, we are dealing with finite relational structures
whose elements come from some interpreted domain with some interpreted
operations. Formally, the object of our study is the following:
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Definition 5.2.1. Let M = 〈U,Ω〉 be an infinite structure on a set U , where
the signature Ω contains some function, predicate, and constant symbols.
Let SC be a relational signature {R1, . . . , Rl} where each relation symbol Ri
has arity pi > 0. Then an embedded finite model (that is, an SC -structure
embedded into M) is a structure

D = 〈A,RD1 , . . . , RDl 〉,

where each RDi is a finite subset of Upi , and A is the union of all elements
that occur in the relations RD1 , . . . , RDl . The set A is called the active domain
of D, and is denoted by adom(D).

The examples of structures M that will be used most often will be real and
natural numbers with various arithmetic operations, for example 〈N,+, ·〉,
the real ordered field 〈R,+, ·, 0, 1, <, 〉, and the real ordered group
〈R,+,−, 0, 1, <〉.

The notation SC comes from the database name schema for the relational
vocabulary of a finite structure.

In the setting where we mix finite and infinite structures, first-order logic
(FO) must be defined carefully. Note that we have two different universes
that can be quantified over: the universe U of the infinite structure M, and
the active domain A of the finite structure D.

Definition 5.2.2. Given a structure M = 〈U,Ω〉 and a relational signature
SC , first-order logic (FO) over M and SC , denoted by FO(SC ,M), is defined
as follows:

• Any atomic FO formula in the language of M is an atomic FO(SC ,M)
formula. For any p-ary symbol R from SC and terms t1, . . . , tp in the
language of M, R(t1, . . . , tp) is an atomic FO(SC ,M) formula.

• Formulae of FO(SC ,M) are closed under the Boolean connectives (∨, ∧,
and ¬).

• If ϕ is an FO(SC ,M) formula, then

∃x ϕ, ∀x ϕ, ∃x∈adom ϕ, and ∀x∈adom ϕ

are FO(SC ,M) formulae.

The class of first-order formulae in the language of M will be denoted by
FO(M) (that is, the formulae built up from atomic M-formulae by Boolean
connectives and quantification ∃, ∀). The class of formulae not using the
symbols from Ω will be denoted by FO(SC ) (in this case all four quantifiers
are allowed).

The notions of free and bound variables are standard. For the semantics,
given a FO(SC ,M) formula ϕ(x1, . . . , xn), and  a = (a1, . . . , an) ∈ Un, we
define the relation (M, D) |= ϕ( a). When M is understood, we usually write
just D |= ϕ( a). The notion of satisfaction is standard, with only the case of
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quantification requiring explanation. Let ϕ(x,  y) be a formula, and let  b be a
tuple of elements of U , of the same length as  y. Then

(M, D) |= ∃x ϕ(x, b) ⇔ (M, D) |= ϕ(a, b) for some a ∈ U

(M, D) |= ∀x ϕ(x, b) ⇔ (M, D) |= ϕ(a, b) for all a ∈ U

(M, D) |= ∃x∈adom ϕ(x, b) ⇔ (M, D) |= ϕ(a, b) for some a ∈ adom(D)
(M, D) |= ∀x∈adom ϕ(x, b) ⇔ (M, D) |= ϕ(a, b) for all a ∈ adom(D).

The quantifiers ∃x ∈ adom ϕ and ∀x ∈ adom ϕ are called active-domain
quantifiers. Note that they are definable with the unrestricted quantifiers ∃
and ∀, as adom(D) is definable by an FO formula. However, we find it more
convenient to have them explicitly in the syntax so that we can use both
restricted and unrestricted quantifiers in the same formula.

Definition 5.2.3. By FOact(SC ,M), we denote the fragment of FO(SC ,M)
that uses only quantifiers ∃x∈adom and ∀x∈adom. Formulae in this fragment
are called the active-domain semantics formulae.

Sometimes we shall also refer to the standard interpretation of the unre-
stricted quantifiers ∃ and ∀ as the natural semantics of first-order formulae,
and to the class FO(SC ,M) as the class of natural-semantics formulae.

Our goal is to study FO(SC ,M). In particular, we shall show that the solu-
tions to the crucial problems of expressive power and query evaluation depend
heavily on the model-theoretic properties of M. In fact, we shall see the full
range of expressivity – from all computable properties to just FOact(SC )-
definable properties – for various structures M. Of course it is highly undesir-
able to have a query language that expresses all computable queries, since in
the database setting we want to keep the complexity low, and we want queries
to be optimizable. The latter situation is much more attractive, since essen-
tially one is dealing with the familiar relational calculus on finite databases.

5.3 Constraint Databases

The field of constraint databases (CDB) was initiated in 1990, and since then
has become a well-established topic in the database field. It grew out of the
research on Datalog and constraint logic programming (CLP). The original
motivation was to combine work in these two areas, with the goal of obtaining
a database-style, optimizable version of constraint logic programming. The
key idea was that the notion of a tuple in a relational database could be
replaced by a conjunction of constraints from an appropriate language (for
example, linear arithmetic constraints), and that many of the features of
the relational model could be extended in an appropriate way. In particular,
standard query languages such as those based on first-order logic and Datalog
could be extended, at least in principle, to such a model.
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The primary motivation for constraint databases comes from the field of
spatial and spatio-temporal databases, and geographical information systems
(GIS). One wants to store an infinite set – say, a region on the real plane – in
a database and query it as if all the points (infinitely many) were stored. This
is clearly impossible. However, it is possible to store a finite representation of
an infinite set, and to make this completely transparent to the user, who can
still access the data as though infinitely many points were stored.

To illustrate how infinite geometric objects can be represented with
various classes of constraints, we use the following examples.

Consider Fig. 5.1. This figure can be described, using polynomial
inequalities with integer coefficients as follows:

(x2/25 + y2/16 = 1) ∨ (x2 + 4x + y2 − 2y ≤ 4)
∨ (x2 − 4x + y2 − 2y ≤ −4) ∨ (x2 + y2 − 2y = 8 ∧ y < −1) .

The first equality describes the outer ellipse of the figure, the second and third
disjuncts describe the “eyes”, and the last disjunct describes the “mouth”.

If we restrict ourselves to inequalities involving linear functions, the face
in Fig. 5.1 can no longer be defined. It can, however, be approximated as
follows (Fig. 5.2):

(−5 ≤ x ≤ 5 ∧ y = −4) ∨ (−5 ≤ x ≤ 5 ∧ y = 4)
∨ (x = 5 ∧ −4 ≤ y ≤ 4) ∨ (x = −5 ∧ −4 ≤ y ≤ 4)
∨ (−3 ≤ x ≤ −1 ∧ 0 ≤ y ≤ 2) ∨ (1 ≤ x ≤ 3 ∧ 0 ≤ y ≤ 2)
∨ (3y = −x− 6 ∧−2 ≤ y ≤ −1) ∨ (3y = x− 6 ∧ −2 ≤ y ≤ −1) .

The first four disjuncts describe the outer rectangle. The next two disjuncts
describe the “eyes”, and the last two describe the “mouth”.

Fig. 5.1. An example of two-variable polynomial constraints

Fig. 5.2. An example of two-variable linear arithmetic constraints
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What makes the sets depicted in Figs. 5.1 and 5.2 special is that they are
definable by FO formulae over some structures, in this case the real field and
the real ordered group.

Definition 5.3.1. Given a structure M = 〈U,Ω〉, a set X ⊆ Un is called
M-definable (or definable over M, or just definable if M is understood) if
there exists an FO formula ϕ(x1, . . . , xn) in the language of M such that

X = {(a1, . . . , an) ∈ Un | M |= ϕ(a1, . . . , an)}.

We now consider two classes of definable sets that are especially relevant
in the context of constraint databases.

Definition 5.3.2. We use the abbreviations R for the real field (that is,
〈R,+, ·, 0, 1, <〉) and Rlin for the real ordered group (〈R,+,−, 0, 1, <〉). Sets
definable over R are called semialgebraic and sets definable over Rlin are
called semilinear.

A remarkable property of both Rlin and R is that they admit quantifier
elimination; that is, every formula is equivalent to a quantifier-free one. For
Rlin this is a simple consequence of Fourier-Motzkin elimination; for R, this
is a celebrated result of Tarski.

Thus, every semialgebraic set in Rn is a Boolean combination of sets
given by polynomial equalities and inequalities of the form

p(x1, . . . , xn) {=, >,<} 0,

where p is a polynomial (with rational or integer coefficients). Similarly, a
semilinear set in Rn is a Boolean combination of sets given by linear equalities
and inequalities of the form

a1 · x1 + . . . + an · xn {=, >,<} b,

where the ais and b are rational or integer coefficients. That is, a semilinear
set is a Boolean combination of half-spaces and hyperplanes in Rn.

The set shown in Fig. 5.1 is semialgebraic, and the set shown in Fig. 5.2
is semilinear. In general, the majority of geographical applications represent
regions by linear constraints; that is, regions are semilinear sets. If linear
constraints are not sufficient, one can use polynomial constraints instead.

We are now ready to present a mathematical model of constraint
databases.

Definition 5.3.3. Let M = 〈U,Ω〉 be an infinite structure on a set U , and
let SC be a relational signature {R1, . . . , Rl}, where each relation Ri has
arity pi > 0. Then a constraint database of schema SC is a tuple

D = 〈RD
1 , . . . , RD

l 〉,

where each RD
i is a definable subset of Upi . The superscript D is omitted if

it is clear from the context.
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Thus, the only difference between the definition of a constraint database
and an embedded finite model is that in the former we interpret the SC -
predicates by definable sets, and in the latter we interpret them by finite sets.

The definition of FO(SC ,M) is the same for constraint databases as
it is for embedded finite models, except that we do not use the restricted
quantification ∃x∈adom and ∀x∈adom . The quantifiers are thus interpreted
as ranging over the entire infinite set U . As linear and polynomial constraints
play a special role in the theory of constraint databases, we introduce a
special notation for them.

Definition 5.3.4. If M is the real field, we write FO + Poly(SC ) for
FO(SC ,R), or just FO + Poly if SC is clear from the context. If M is the real
ordered group, we write FO + Lin(SC ) (or just FO + Lin) for FO(SC ,Rlin).

The notation FO + Poly stands for FO with polynomial constraints,
and FO + Lin stands for for FO with linear constraints. An example of
definability in FO + Poly is the property that all points in a relation S lie
on a common circle: ∃a∃b∃r (∀x∀y S(x, y) → (x − a)2 + (y − b)2 = r2). In
general, FO + Poly can define many useful topological concepts, such as
closure, interior, and boundary. These are definable in FO + Lin as well. For
example, the FO + Lin query α(x, y),

∀ε > 0∃x′∃y′
(
S(x′, y′) ∧ (x − ε < x′ < x + ε) ∧ (y − ε < y′ < y + ε)

)

tests whether the pair (x, y) is in the closure of a set S ⊆ R2.
In FO + Poly one can also define the convex hull of a set. To see how

this is done in the two-dimensional case, assume that a semialgebraic set
S ∈ R2 is given. Then ϕ(x, y) given by the formula

∃x1, y1, x2, y2, x3, y3 ∃λ1, λ2, λ3

⎛

⎜
⎜
⎜
⎜
⎝

S(x1, y1) ∧ S(x2, y2) ∧ S(x3, y3)
∧ λ1 ≥ 0 ∧ λ2 ≥ 0 ∧ λ3 ≥ 0
∧ λ1 + λ2 + λ3 = 1
∧ (x = λ1 · x1 + λ2 · x2 + λ3 · x3)
∧ (y = λ1 · y1 + λ2 · y2 + λ3 · y3)

⎞

⎟
⎟
⎟
⎟
⎠

is true on (x, y) iff (x, y) ∈ conv(S). In general, to define the convex hull of a
set S in Rn, one uses Carathéodory’s Theorem which states that  x is in the
convex hull of S ⊆ Rn iff  x is in the convex hull of some n + 1 points in S,
and one codes this by an FO formula just as we did above for the case of R2.

We note again that these examples demonstrate the crucial property of
constraint databases: query languages based on FO view the database as if
it were infinitely many tuples stored in memory. We refer to the database
relations in exactly the same way as we do for the usual relational databases.

Now that we have defined constraint databases and have seen some
examples of querying, we consider the same issues that we addressed in the
context of embedded finite models: expressive power and query evaluation.
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Expressive power. We have seen that FO + Poly is a rather expressive
language for talking about properties of semialgebraic sets, and that
many topological properties of semilinear sets can already be expressed in
the weaker language FO + Lin. We next turn to a very basic topological
property: connectivity. Suppose we are given a semialgebraic or semilinear
set S, and we want to test whether it is topologically connected. Can we
do this in FO + Poly or FO + Lin?

At first, it seems that the answer is “no”. Indeed, it appears that topo-
logical connectivity is rather close to graph connectivity. Take an undi-
rected graph G and embed it in R3 without self-intersections. The embed-
ding is then topologically connected iff G is a connected graph. However,
we know only that FO cannot express graph connectivity; there is nothing
yet that tells us that similar bounds exist for FO + Lin and FO + Poly.

Query Evaluation. Suppose we are given an FO(SC ,M) query ϕ( x) and a
constraint database D over M. How does one evaluate ϕ on D? The answer
to this is very simple – one just puts the definition of relations in D into
ϕ. For example, if ϕ(x) ≡ ∃y (S(x, y) ∧ (p1(x, y) > 0)) and S is given by
p2(x, y) < 0, where p1, p2 are polynomials, then by putting the definition of
S into ϕ we obtain a new formula ϕD(x) ≡ ∃y ((p2(x, y) < 0)∧(p1(x, y) >
0)). As this is an FO formula, it gives us a constraint database.

This may look a little bit like cheating, and of course it is. For example,
how does one check that D |= ϕ(1)? To do so, one must be able to
check whether ϕD(1) is true in R; in general, one must be able to check
whether ϕD( a) is true in a given structure M, where ϕD is the result of
substituting definitions of relations in SC in the query ϕ. This can only
be done if the FO theory of the underlying structure M is decidable. This
property certainly holds for Rlin and R (in fact, they satisfy a much
stronger property of having quantifier elimination); however, for many
structures, this property does not hold (for example, 〈N,+, ·〉).

We shall see in the remainder of this chapter that the correspondence
between the problems of topological connectivity of constraint databases and
graph connectivity in the embedded setting is not an accident: in fact, the
majority of expressivity bounds for constraint databases are obtained by
rather simple reductions to embedded finite models.

5.4 Collapse and Genericity: An Overview

The next five sections will deal primarily with the setting of embedded finite
models. In this short section, we give an overview of the main results.

Many results on expressive power use the notion of genericity, which
comes from the classical relational database setting. Informally, this notion
is sometimes stated as a data independence principle: when one evaluates
queries on relational databases, the exact values of elements stored in the
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database are not important. For example, the answer to the query “Does
the graph have diameter 2?” is the same for the graph {(1, 2), (1, 3), (1, 4)}
and the graph {(a, b), (a, c), (a, d)}, which is obtained by the mapping
1 �→ a, 2 �→ b, 3 �→ c, 4 �→ d.

In general, generic queries commute with permutations of the domain.
Queries expressible in FO(SC ,M) need not be generic: for example, the
query given by ∃x S(x) ∧ x > 1 is true on S = {2} but false on S = {0}.
However, as all queries definable in standard relational languages – relational
calculus, Datalog, etc. – are generic, to reduce questions about FO(SC ,M) to
questions in ordinary finite-model theory, it suffices to restrict one’s attention
to generic queries.

We now define genericity of Boolean queries (which are just classes of
SC -structures) and non-Boolean queries (which map a finite SC -structure to
a finite subset of Um, m > 0). We also define genericity in the ordered and
unordered settings. The reason for considering the ordered setting separately
is twofold: first, most structures of interest in applications are ordered, and
second, in several proofs we need to introduce the order relation to obtain
the desired results.

Given a function π : U → U , we extend it to finite SC -structures D by
replacing each occurrence of a ∈ adom(D) with π(a).

Definition 5.4.1. • A Boolean query Q is totally generic (or order-generic)
if for every partial injective function (or partial monotone injective func-
tion, respectively) π defined on adom(D), we have Q(D) = Q(π(D)).

• A non-Boolean query Q is totally generic (or order-generic) if for
every partial injective function (or partial monotone injective func-
tion, respectively) π defined on adom(D) ∪ adom(Q(D)), we have
π(Q(D)) = Q(π(D)).

Order-genericity of course assumes that U is linearly ordered. Clearly, total
genericity is stronger than order-genericity. Some examples of totally generic
queries are all queries definable in relational algebra, Datalog, the While lan-
guage, and in fact in almost every language studied in relational database the-
ory. As a concrete example, consider the parity query. Since for any injective
π : U → U it is the case that card(X) = card(π(X)), parity is totally generic.

Examples of order-generic queries include queries definable in relational
calculus and Datalog with order (that is, order comparisons are allowed in
selection predicates and Datalog rules).

5.4.1 Approaches to Proving Expressivity Bounds

How can one prove bounds on FO(SC ,M)? Probably by reducing the problem
to something we know about. And we know a lot about FO over finite struc-
tures, ordered or unordered. In our terms, this is either FOact(SC , 〈U, ∅〉),
which we denote by FOact(SC ) (that is, there are no operations on U , and
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everything is restricted to the active domain), or FOact(SC , 〈U,<〉), which will
be denoted by FOact(SC , <) (that is, the only predicate on U is the order <).

To reduce the expressivity of FO(SC ,M) to FOact(SC , <) or FOact(SC ),
we have to deal with two problems: unrestricted quantification over U , and
the presence of M-definable constraints in formulae. Fig. 5.3 illustrates
possible approaches to the problem.

We need to go from the upper right corner to the lower left corner. One
possibility is to move left first, and then down. To move left, we must prove
that for a given M, FO(SC ,M) and FOact(SC ,M) have the same power.
That is, all unrestricted quantification can be eliminated. This will be called
natural-active collapse. To move down, we would have liked to prove that
FOact(SC ,M) = FOact(SC , <), but this is impossible for the following reason.

Lemma 5.4.2. FOact(SC , <) defines only order-generic queries.

On the other hand, queries definable in FOact(SC ,M) need not be generic.
Thus, we attempt to prove the next best thing: that all generic queries in
FOact(SC ,M) and FOact(SC , <) are the same. This is called active generic
collapse.

Another possibility is to go down first from the right upper corner. For
the same reasons as before, we have to restrict ourselves to generic queries,
and attempt to prove that any generic query in FO(SC ,M) is definable in
FO(SC , <). This is called natural-generic collapse. Then, to go left, we have
to prove the natural-active collapse over a very simple structure 〈U,<〉.

Let us now summarize the definitions of that collapse results that we shall
be proving here.

Definition 5.4.3. We say that a structure M admits:

• natural-active collapse if FO(SC ,M) = FOact(SC ,M) for every SC ;
• active-generic collapse if, for every SC , the classes of order-generic

queries in FOact(SC ,M) and FOact(SC , <) are the same (assuming M is
ordered);

FOact(SC ,M) =============

natural-active
collapse

FO(SC ,M)

FOact(SC , <)

active
generic
collapse

(((((((((

============== FO(SC , <)

natural
generic
collapse

(((((((((

Fig. 5.3. Approaches to proving bounds for FO(SC ,M)
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• natural-generic collapse if, for every SC , the classes of order-generic
queries in FO(SC ,M) and FO(SC , <) are the same (assuming M is
ordered).

We shall also consider collapse results for totally generic queries, but
they will of lesser importance. The next two sections deal with collapse
results: Sect. 5.5 discusses active generic collapse, and Sect. 5.6 discusses
natural-active collapse and natural-generic collapse.

5.5 Active-Generic Collapse

Our goal is to prove active-generic collapse over any ordered structure. We
do this by proving a Ramsey property, defined below, and then showing that
it implies this collapse.

We start with a simple example that illustrates the main idea of the
proof. Suppose we have a sentence Φ of FO + Poly:

∀x∈adom ∀y∈adom S(x, y) → (¬(x = y2) ∧ ¬(y = x2)).

In general, given a sentence, one cannot decide whether it defines a generic
query. So assume for the moment that the given sentence happens to express
a generic query. How does one show then that this query is definable in FO
without polynomial constraints (for example, how does one prove that this
query is not parity)? Clearly, one needs a systematic way of finding counterex-
amples for each non-FO query. This is provided by the following observation.
Let X = {33i | i > 0} ⊂ N. Then, for any x, y ∈ X , we have x �= y2, because
3j = 2 · 3i does not hold for any i, j > 0. Thus, if adom(S) ⊂ X , then
S |= Φ. Now, assume that Φ expresses a generic query Q. Given any finite
relation S, we can find a monotone embedding π of its active domain into
X . Thus, Q(S) = Q(π(S)) by genericity, and we know that Q(π(S)) is true.
Hence, Q(S) is true for all S, and thus Φ cannot express a non-first-order
generic query.

This is the basic idea behind the proof of active-generic collapse: we first
show that for each formula, its behavior on some infinite set is described by
a first-order formula. This is called the Ramsey property. We then show how
genericity and the Ramsey property imply the collapse.

5.5.1 The Ramsey Property

Definition 5.5.1. Let M = 〈U,Ω〉 be an ordered structure. We say that an
FOact(SC ,M) formula ϕ( x) has the Ramsey property if the following is true:

Let X be an infinite subset of U . Then there exists an infinite set
Y ⊆ X and an FOact(SC , <) formula ψ( x) such that for any instance
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D of SC with adom(D) ⊂ Y , and for any  a over Y , it is the case
that D |= ϕ( a) ↔ ψ( a).

We speak of the total Ramsey property if ψ is an FOact formula in the
language of SC (note the absence of order).

In the rest of this section, we prove the Ramsey property. We fix an
ordered structure M = 〈U,Ω〉 and a schema SC . The following simple lemma
will often be used as a first step in proofs of collapse results. Before stating
it, note that for any FO(SC ,M), subformulae (x = y) can be viewed as both
atomic FO(SC ) and atomic FO(M) formulae. For the rest of the chapter,
we choose to view them as atomic FO(M) formulae; that is, atomic FO(SC )
formulae are only those of the form R(· · · ) for R ∈ SC .

Lemma 5.5.2. Let ϕ( x) be an FO(SC ,M) formula. Then there exists an
equivalent formula ψ( x) such that every atomic subformula of ψ is either an
FO(SC ) formula or an FO(M) formula. Furthermore, it can be assumed that
none of the variables  x occurs in an FO(SC ) atomic subformula of ψ( x). If
ϕ is an FOact(SC ,M) formula, then ψ is also an FOact(SC ,M) formula.

Proof. Introduce m fresh variables z1, . . . , zm, where m is the maxi-
mal arity of a relation in SC , and replace any atomic formula of the
form R(t1( y), . . . , tl( y)), where l ≤ m and the tis are M-terms, by
∃z1 ∈ adom . . . ∃zl ∈ adom

∧
i(zi = ti( y)) ∧ R(z1, . . . , zl). Similarly, use exis-

tential quantifiers to eliminate  x-variables from FO(SC ) atomic formulae. �

The key in the inductive proof of the Ramsey property is the case of
FO(M) subformulae. For this, we first recall the infinite version of Ramsey’s
Theorem, in the form most convenient for our purposes.

Theorem 5.5.3 (Ramsey). Given an infinite ordered set X, and any
partition of the set of all ordered m-tuples x1 < . . . < xm of elements of X
into l classes A1, . . . , Al, there exists an infinite subset Y ⊆ X such that all
ordered m-tuples of elements of Y belong to the same class Ai.

Lemma 5.5.4. Let ϕ( x) be an FO(M) formula. Then ϕ has the Ramsey
property.

Proof. Consider a (finite) enumeration of all the ways in which the variables  x
may appear in the order of U . For example, if  x = (x1, . . . , x4), one possibility
is x1 = x3, x2 = x4, and x1 < x2. Let P be such an arrangement, and ζ(P )
a first-order formula that defines it (x1 = x3 ∧ x2 = x4 ∧ x1 < x3 in the
above example). Note that there are finitely many such arrangements P ; let
P be the set of all of these. Each P induces an equivalence relation on  x,
for example {(x1, x3), (x2, x4)} for the P above. Let  xP be a subtuple of  x
containing a representative of each class (e.g. (x1, x4)), and let ϕP ( xP ) be
obtained from ϕ by replacing all variables from an equivalence class by the
chosen representative. Then ϕ(x) is equivalent to
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∨

P∈P
ζ(P ) ∧ ϕP ( xP ) .

Let P ′ ⊆ P and P0 ∈ P ′. Let X ⊆ U be an infinite set. Assume that ψ( x) is
given by ∨

P∈P′
ζ(P ) ∧ ϕP ( xP ).

We shall now show that there exists an infinite set Y ⊆ X and a quantifier-free
FO(<) formula γP0( x) such that ψ is equivalent to

γP0( x) ∨
∨

P∈P′−{P0}
ζ(P ) ∧ ϕP ( xP )

for tuples  x of elements of Y .
To see this, suppose that P0 has m equivalence classes. Consider a

partition of tuples of Xm, ordered according to P0, into two classes: A1, the
class of those tuples for which ϕP0( xP0) is true, and A2, the class of those
for which ϕP0( xP0 ) is false. By Ramsey’s Theorem, for some infinite set
Y ⊆ X , either all ordered tuples over Y m are in A1 or all are in A2. In the
first case, ψ is equivalent to ζ(P0) ∨

∨
P∈P′−{P0} ζ(P ) ∧ ϕP ( xP ), and in the

second case ψ is equivalent to ¬ζ(P0) ∨
∨
P∈P′−{P0} ζ(P ) ∧ ϕP ( xP ), proving

the claim.
The lemma now follows by applying this claim inductively to every

partition P ∈ P , passing to smaller infinite sets, while getting rid of all
the formulae containing symbols other than = and <. At the end, we
have an infinite set over which ϕ is equivalent to a quantifier-free FO(<)
formula. �

Now a simple inductive argument proves the following.

Proposition 5.5.5. Let M be any ordered structure. Then every
FOact(SC ,M) formula has the Ramsey property.

Proof. By Lemma 5.5.2, we assume that every atomic subformula is an
FOact(SC ) formula or an FO(M) formula. The base cases for the induction are
those of FOact(SC ) formulae, where there is no need to change the formula or
find a subset, and of FO(M) atomic formulae, which is given by Lemma 5.5.4.

Let ϕ( x) = ϕ1( x) ∧ ϕ2( x), and let X ⊆ U be infinite. First, find ψ1,
Y1 ⊆ X such that for any D and  a over Y1, D |= ϕ1( a) ↔ ψ1( a). Next, by
using the hypothesis for ϕ2 and Y1, find an infinite Y2 ⊆ Y1 such that for any
D and  a over Y2, D |= ϕ2( a) ↔ ψ2( a). Then take ψ = ψ1 ∧ ψ2 and Y = Y2.

The case of ϕ = ¬ϕ′ is trivial.
For the existential case, let ϕ( x) = ∃y∈adom ϕ1(y,  x). By the hypothesis,

we find Y ⊆ X and ψ1(y,  x) such that, for any D and  a over Y and any b ∈ Y
we have D |= ϕ1(b, a) ↔ ψ1(b, a). Let ψ( x) = ∃y ∈ adom .ψ1(y,  x). Then,
for any D and  a over Y , D |= ψ( a) iff D |= ψ1(b, a) for some b ∈ adom(D)
iff D |= ϕ1(b, a) for some b ∈ adom(D) iff D |= ϕ1( a), thus finishing the
proof. �
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It is clear from the proof of Proposition 5.5.5 that only the case of atomic
FO(M) formulae requires the introduction of the order relation. Thus, if
atomic FO(M) formulae had the total Ramsey property over M, so would all
FOact(SC ,M) formulae. In general, this cannot be guaranteed for arbitrary
M (consider, for example, 〈U,<〉). However, there is an important class of
structures on the reals for which this statement can be shown.

We say that M = 〈R, Ω〉 is analytic if Ω consists of real analytic functions.
For example, 〈R,+, ·〉 is analytic.

Lemma 5.5.6. Let F = {fi( x)}i∈I be a countable family of real analytic
functions, where  x = (x1, . . . , xl). Assume that none of the functions in F
is identically zero. Let X ⊆ R be a set of cardinality of the continuum. Then
there is a set Y ⊆ X of cardinality of the continuum such that, for any tuple
 c of l distinct elements of Y , none of fi( c), where i ∈ I, equals zero.

The proof of this result, which we omit here, is a Zorn’s lemma argument
based on the fact that a nonzero real analytic function can have at most
countably many zeros.

Proposition 5.5.7. Let M = 〈R, Ω〉 be analytic. Then every FOact(SC ,M)
formula has the total Ramsey property.

Proof sketch. We only need to modify the proof of Lemma 5.5.4, to show
the total Ramsey property of atomic FO(M) formulae. This can be done by
using Lemma 5.5.6 in place of Ramsey’s Theorem. �

5.5.2 Collapse Results

We now show how the Ramsey property implies active-generic collapse.
Recall (see Sect. 5.4) that an m-ary query, m > 0, is a mapping from finite
SC -structures on U to finite subsets of Um. We start with the following
observation.

Lemma 5.5.8. If Q is an order-generic query on SC-structures over an
infinite set U , then adom(Q(D)) ⊆ adom(D) for every SC-structure D.

Proof. First note that for any finite subsets Y ⊂ X of an infinite ordered set
U , any x ∈ X − Y , and any number n > 0, we can find monotone injective
maps π1, . . . , πn defined on X such that for all i, j, πi(Y ) = πj(Y ), but all
π1(x), . . . , πn(x) are distinct. This is true because U has either an infinitely
descending or an infinitely ascending chain; in each case it is easy to construct
the πis.

Now suppose that Z = adom(Q(D)) − adom(D) is nonempty for an
order-generic query Q. Let X = adom(Q(D)) ∪ adom(D), Y = adom(D),
and n = card(Z) + 1. Construct π1, . . . , πn as above. Now, for every
i, j, we have πi(Q(D)) = Q(πi(D)) = Q(πj(D)) = πj(Q(D)); hence
π1(Z) = . . . = πn(Z). In particular, for every x ∈ Z, πi(x) ∈ π1(Z), whence
card(π1(Z)) = card(Z) ≥ n. This contradiction proves the lemma. �
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Lemma 5.5.9. Assume that every FOact(SC ,M) formula has the Ramsey
property. Then M admits active-generic collapse.

Proof. Let Q be an order-generic query definable in FOact(SC ,M). By the
Ramsey property, we can find an infinite X ⊆ U and an FOact(SC , <)-
definable Q′ that coincides with Q on X . We claim that they coincide
everywhere. Let D be an SC -structure. Since X is infinite, there exists
a partial monotone injective map π from adom(D) into X . Since Q′ is
FOact(SC , <)-definable, it is order-generic, and thus Q and Q′ do not extend
active domains. Hence, π(Q(D)) = Q(π(D)) = Q′(π(D)) = π(Q′(D)), from
which Q(D) = Q′(D) follows. �

We now put Proposition 5.5.5 and Lemma 5.5.9 together:

Theorem 5.5.10. Every ordered structure admits active-generic collapse.

Thus, no matter what functions and predicates there are in M, first-order
logic cannot express more generic active-semantics queries over it than just
FOact(SC , <). In particular, we have the following.

Corollary 5.5.11. Let M be an arbitrary structure. Then queries such
as parity, majority, connectivity, transitive closure, and acyclicity are not
definable in FOact(SC ,M).

Proof. Assume otherwise, and extend M to M< by adding the symbol <,
to be interpreted as a linear order. Then FOact(SC ,M<) defines one of the
above queries, for an appropriate SC . Since all the queries listed above are
order-generic, we obtain from Theorem 5.5.10 that FOact(SC , <) defines
them, which is not the case. �

We conclude by showing a stronger collapse result over analytic structures.

Corollary 5.5.12. If M = 〈R, Ω〉 is analytic, then any totally generic query
definable in FOact(SC ,M) is definable in FOact(SC ).

This is indeed a stronger version of collapse, as there exist totally generic
queries in FOact(SC , <)−FOact(SC ) (even for very simple vocabularies SC ).

5.6 Natural-Active Collapse

So far, we have dealt with formulae that use only the restricted quantification
∀x∈adom and ∃x∈adom . We next move to unrestricted quantification, where
quantifiers are allowed to range over the infinite universe of a structure M. Our
ultimate goal is to prove natural-active collapse: FO(SC ,M) = FOact(SC ,M).
We start by showing that there is a reason to believe that this may hold
for some structures M, although not for all of them. We then review some
notions from model theory that help us distinguish good structures (for which
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the collapse holds) from bad ones (for which it does not). After that, we give
a gentle introduction to the main ideas of the proof of the natural-active
collapse, considering a simple case of linear constraints (that is, FO + Lin)
and one unrestricted existential quantifier to be eliminated. After that, we
present a general proof and an algorithm, and revisit the collapse for generic
queries.

5.6.1 Collapse: Failure and Success

We have seen that the active-generic collapse holds for every ordered structure
Does this extend to the natural-active collapse? To give a negative answer,
consider the structure N = 〈N,+, ·〉. (We may include an order relation < as
well, but it is definable: x < y iff ¬(x = y) ∧ ∃z (y = x + z).) Let SC consist
of a single unary predicate S. From the active generic collapse, we know
that parity is not definable in FOact(SC ,N). However, we have the following
proposition.

Proposition 5.6.1. Parity is definable in FO(SC ,N). Consequently, N does
not admit natural-active collapse.

Proof. Let p1, p2, . . . enumerate the prime numbers. Consider three predicates
on N: P0(x) holds iff x is prime, P1(x, y) holds iff y equals px, and P2(x)
holds iff x is the product of an even number of distinct primes. Note that
P0, P1, and P2 are recursive, and thus definable over N. The way to express
parity is then the following: given a set S = {x1, . . . , xn} with x1 < . . . < xn,
we code it as cS = px1 · . . . · pxn . Suppose we have a formula ϕ(c) which holds
iff c = cS . Then parity is expressed as

¬∃xS(x) ∨ ∃c (ϕ(c) ∧ P2(c)).

Thus, it remains to show how to express ϕ. It can be defined by the following
formula:

∀p P0(p) →
(

(∃y(c = p · y)) → ¬∃y(c = p · p · y)
∧ (∃y(c = p · y)) ↔ ∃x (S(x) ∧ P1(x, p))

)

.

This says that for every prime p that divides c, c is not divisible by p2, and
p is of the form px for some x ∈ S, which forces c to be cS . This completes
the proof. �

One may observe that there is nothing specific to parity in the proof
above. In particular, the coding scheme can be easily extended to finite
SC -structures for any SC , and the fact that every recursive predicate on N
is definable in N allows us to state the following proposition.

Proposition 5.6.2. For any SC, every computable property of finite
SC-structures is definable in FO(SC ,N). �
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In fact, FO(SC ,N) can even express properties that are not computable.
Thus, we have witnessed a rather dramatic failure of natural-active

collapse. Is there then something that gives us hope of recovering it for some
structures? Let us first look at the simplest possible M: 〈U, ∅〉. It turns out
that in this case the collapse can be proven rather easily.

Theorem 5.6.3. For every schema, FO(SC ) = FOact(SC ).

Proof. We consider the case of nonempty finite structures. If an FOact(SC )
formula ψ( x) equivalent to an FO(SC ) formula ϕ( x) is found in this case,
then for arbitrary finite SC -structures, a formula equivalent to ϕ is given
by (∃x∈ adom(x = x) ∧ ψ( x)) ∨ (¬∃x∈ adom(x = x) ∧ ϕ∅( x)), where ϕ∅( x)
is a quantifier-free formula equivalent to the formula obtained from ϕ by
replacing each occurrence of a predicate from SC by false.

Now the proof is by induction on the structure of the formula. The cases
of atomic formulae and Boolean connectives are obvious. For the existential
case, we define a transformation [γ]x that eliminates all free occurrences of
the variable x from quantifier-free formulae:

• If γ is (x = x), then [γ]x = true.
• If γ is (x = y) or R(. . . , x, . . .), then [γ]x = false .
• If γ is any other atomic formula, then [γ]x = γ.
• If γ = γ1 ∨ γ2, then [γ]x = [γ1]x ∨ [γ2]x.
• If γ = ¬γ′, then [γ]x = ¬[γ′]x.

Let ϕ( z) = ∃xα(x,  z) where z = (z1, . . . , zn). By the hypothesis, α
is equivalent to an FOact(SC ) formula α′(x,  z). Assume, without loss of
generality, that α′ is of the form Qy1∈adom . . .Qym∈adom β(x,  y,  z), where
β is quantifier-free.

Define ϕ0( z) ≡ ∃x ∈ adom α′(x,  z), ϕi( z) ≡ α′(zi,  z) and ϕ∞( z) ≡
Qy1∈adom . . .Qym∈adom [β(x,  y,  z)]x. Let

ϕ′( z) ≡ ϕ0 ∨ (
n∨

i=1

ϕi) ∨ ϕ∞.

We now show that D |= ϕ( a) ↔ ϕ′( a) for every nonempty D and every
 a ∈ Un. First, note that for every  b ∈ adom(D)m, the following three state-
ments are equivalent: (i) D |= [β(x, b, a)]x; (ii) for some c �∈ adom(D) and
not in  a, D |= β(c, b, a); (iii) for all c �∈ adom(D) and not in  a, D |= β(c, b, a).
Indeed, these equivalences hold for atomic formulae, and they are preserved
under Boolean connectives.

Since all quantified variables yi range over the active domain, we then
obtain that D |= ϕ∞( a) iff for some c �∈ adom(D) and not in  a, D |= α′(c, a).
This implies the required equivalence D |= ϕ( a) ↔ ϕ′( a). �

Thus, natural-active collapse is a meaningful concept: there are structures
that admit it. On the other hand, we know that there are restrictions on
structures that admit this collapse. We next discuss such restrictions.
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5.6.2 Good Structures vs. Bad Structures: O-minimality

We start with a minimal requirement a structure M must satisfy to admit
natural-active collapse. Suppose we have an FO(M) formula, that is, a
formula that does not use symbols from SC . What does it mean for it to be
equivalent to an FOact(SC ,M) formula? In the absence of a finite structure,
this means being equivalent to a quantifier-free FO(M) formula. Thus, to
admit the collapse, a structure M must admit quantifier elimination: that is,
for every formula ϕ( x) of FO(M), there is a quantifier-free FO(M) formula
ψ( x) such that M |= ∀ x ψ( x) ↔ ϕ( x).

Classical model theory provides us with many examples of such structures;
some of them have been mentioned already in the introduction, and a few
are listed below:

• 〈U,<〉, where < is a dense order without endpoints on U .
• 〈R,+,−, 0, 1, <〉 – this is a consequence of Fourier elimination.
• 〈R,+, ·, 0, 1, <〉 – this is, of course, Tarski’s classical result on quantifier

elimination for real closed fields.
• 〈N,+, <, 0, 1, (≡k)k>0〉, where x ≡k y iff x = y(modk) – this is Presburger

arithmetic.

However, quantifier elimination alone is not sufficient to guarantee the
collapse. Indeed, any structure M admits a definitional expansion to some
M′ that has quantifier elimination (simply by adding new symbols for all
definable predicates). Thus, if we take such an expansion N′ of N = 〈N,+, ·〉,
we still have that all computable properties of finite SC -structures are
definable in FO(SC ,N′), but FOact(SC ,N′) cannot define parity.

To impose additional restrictions, we consider the model-theoretic notion
of o-minimality. An ordered structure M = 〈U,Ω〉 is o-minimal if every
definable set is a finite union of points and open intervals. Here, definable
sets are those of the form {x ∈ U | M |= ϕ(x)}, where ϕ is a first-order
formula in the language of Ω and constants for elements of U .

An interval is given by its endpoints, a and b, and it is either an open
interval (a, b) = {c | a < c < b}, a closed interval [a, b] = {c | a ≤ c ≤ b}, or
one of the half-open half-closed versions [a, b) or (a, b]; by considering +∞ and
−∞ as endpoints, we also have unbounded versions of the above: {c | c < b},
{c | c ≤ b}, {c | c > a}, and {c | c ≥ a}. Also, an equivalent definition of
o-minimality is that every definable set is a finite union of intervals.

Let us list some important examples of o-minimal structures.

• 〈Q, <, (q)q∈Q〉 is o-minimal. Indeed, every first-order formula ϕ(x) is
equivalent to a quantifier-free one, which is then a Boolean combination
of finitely many formulae of the form x = q or x < q. Let q1 < . . . < qk be
the finite set of all constants that occur in such formulae. Consider then
the intervals (−∞, q1), {q1}, (q1, q2), {q2}, . . . , {qk}, (qk,∞). It is clear
that the set defined by ϕ is a union of some of those.
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• A more complex example is that of the real field, 〈R,+, ·, 0, 1, <〉. Consider
a formula ϕ(x). Since the real field has quantifier elimination, ϕ(x) is equiv-
alent to a Boolean combination of formulae of the form p(x) > 0, where p is
a polynomial with real coefficients. Consider all such polynomials which are
not identically zero, and let q1 < . . . < qk be the finite set of all the roots of
these polynomials (each can have only finitely many). We thus again obtain
the result that the set defined by ϕ(x) is a union of some intervals among
(−∞, q1), {q1}, (q1, q2), {q2}, . . . , {qk}, (qk,∞), as no polynomial used in
the representation of ϕ(x) can change sign on such an interval.

• The same quantifier elimination argument shows that the real ordered
group 〈R,+,−, 0, 1, <〉 is o-minimal.

• There are other interesting examples of o-minimal structures, where
proving o-minimality is very hard. The most notable one is that of the
exponential field, 〈R,+, ·, ex〉. Others include the expansion of the real
field with the Gamma-function or with restricted analytic functions.

We shall present more properties of o-minimal structures before proving
natural-active collapse in Section 5.6.5.

5.6.3 Collapse Theorem and Corollaries

Our goal now is to show the following.

Theorem 5.6.4 (Natural-Active Collapse). Let M = 〈U,Ω〉 be an
o-minimal structure that admits quantifier elimination. Then it admits
natural-active collapse.

Furthermore, if the theory of M is decidable and the quantifier elimination
procedure is effective, then there is an algorithm that, for every FO(SC ,M)
formula, constructs an equivalent FOact(SC ,M) formula. �

The proof of this theorem will be presented in Section 5.6.5, after we
present the main ideas in the simpler case of linear constraints, that is, where
M is 〈R,+,−, 0, 1, <〉.

We first state some corollaries of this result. Since the real field and
the real-ordered group are o-minimal and admit quantifier elimination, we
conclude that they also admit natural-active collapse.

Corollary 5.6.5. Every natural-semantics FO + Lin (or FO + Poly) for-
mula is equivalent to an active-domain semantics FO + Lin (or FO + Poly,
respectively) formula. �

Combining this with active-generic collapse, we obtain the following.

Corollary 5.6.6. Let Q be an order-generic query expressible in FO + Poly

or FO + Lin. Then Q is expressible in FOact(SC , <). In particular, queries
such as parity, majority, connectivity, transitive closure, and acyclicity are
not definable in FO + Poly. �
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Thus, the expressive power of FO + Poly and FO + Lin is remarkably
constrained – they cannot express more generic queries than FO queries over
ordered finite structures, despite the fact that they possess great expressive
power for nongeneric queries, as we saw in Sect. 5.3.

Before we present the proof, we give a simple example of a transformation
from FO(SC ,M) to FOact(SC ,M). Let SC contain one binary predicate
S, and let M be the real field (that is, we are dealing with FO + Poly).
Consider the sentence

Φ ≡ ∃a∃b∀x∀y (S(x, y) → a · x + b = y),

which says that S lies on a line. Note that this can be reformulated as follows:
S lies on a line iff every triple of elements of S is collinear. Given three points
(x1, y1), (x2, y2), (x3, y3) in R2, there is a quantifier-free FO + Poly formula
χ(x1, x2, x3, y1, y2, y3) that tests whether these points are collinear. Indeed,
such points are collinear iff either x1 = x2 = x3, or y1 = y2 = y3, or two
points coincide, or, in the case when all three points are different, they can
be ordered either as xi1 < xi2 < xi3 , yi1 < yi2 < yi3 or xi1 < xi2 < xi3 ,
yi1 > yi2 > yi3 , and (xi2 − xi1 )(yi3 − yi2) = (xi3 − xi2)(yi2 − yi1). We now
express Φ by an equivalent active-domain formula,

∀x1, x2, x3, y1, y2, y3∈adom
(
S(x1, y1) ∧ S(x2, y2) ∧ S(x3, y3) →
χ(x1, x2, x3, y1, y2, y3)

)

.

Of course, this transformation is very ad hoc, and takes into account the
semantics of the original formula Φ. In what follows, we present a more
general transformation.

5.6.4 Collapse Algorithm: the Linear Case

The general proof of natural-active collapse is by induction on the formulae.
The cases of atomic formulae and Boolean connectives are simple: for atomic
formulae, there is no need to change anything, and one just propagates the
connectives. The only hard case is that of the unrestricted quantification
∃xϕ. We now consider an FO + Lin sentence Φ ≡ ∃zϕ(z), where

ϕ(z) ≡ Qy1∈adom . . .Qym∈adom α(z,  y),

and where each Q is either ∃ or ∀. (Of course we could have considered an
open formula Φ( x) with free variables, as we shall do in the next section.
However, our goal here is to present the ideas of the proof, so we make the
assumption that there are no free variables. It will turn out that they do not
add to the complexity of the proof, but they make notation heavier.)

Using Lemma 5.5.2, we can further assume that α is a Boolean
combination of formulae of the following form:
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1. atomic SC -formulae Rj( u), where Rj ∈ SC and  u only has variables
from  y;

2. linear constraints involving z: z ϑ
∑m
i=1 ai · yi + b, where ϑ is = or <;

3. linear constraints not involving z:
∑m
i=1 ai · yi + b ϑ 0.

Let f1( y), . . . , fp( y) enumerate the (finitely many) functions that occur
as right-hand sides

∑m
i=1 ai · yi + b of linear constraints in item 2 above (that

is, those involving z). We also assume that one of the functions fi is the
function f( y) = y1.

Fix an SC -structure D, and let A = adom(D). Let

B0 = {fi( a) | i = 1, . . . , p, a ∈ Am}.
Note that A ⊆ B0. Assume that B0 = {b1, . . . , bk} with b1 < . . . < bk.

��b1 bi bi+1 bk

z1 z2

• • • •

Fig. 5.4. Illustration to the natural-active collapse for the linear case

If z1 ∈ (bi, bi+1) satisfies ϕ, then any other z2 from this interval satisfies
ϕ, as illustrated in Fig. 5.4. Indeed, the variable z is used only in atomic sub-
formulae of the form of item 2, that is, z ϑ fj( y). Thus, for any instantiation
 a for  y from the active domain A, we have D |= α(z1, a) ↔ α(z2, a), since the
signs of z1 and z2 with respect to all fj( a) are the same. Since all variables  y
range over A, this implies D |= ϕ(z1) ↔ ϕ(z2). Similarly, we note that for any
z1, z2 < b1, or for any z1, z2 > bk, it is also the case that D |= ϕ(z1) ↔ ϕ(z2).

Thus, if ϕ is witnessed by an element in an interval (bi, bi+1), or (−∞, b1),
or (bk,∞), it is witnessed by every element of the interval. Hence, if we define

B1 = {b + b′

2
| b, b′ ∈ B0} ∪ {b− 1 | b ∈ B0} ∪ {b + 1 | b ∈ B0},

we conclude that D |= ∃zϕ(z) iff D |= ϕ(b) for some b ∈ B1.
A nice property of B1 is that it is definable in FO + Lin under the

active-domain semantics. In fact, using the definition of B1, we just rewrite
∃zϕ(z) as an equivalent active-domain semantics sentence:

∃ u∈adom ∃ v∈adom

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(∨p
i=1

∨p
j=1(ϕ([ fi(�u)+fj(�v)

2 / z]))
)

∨
(∨p

i=1 ϕ([(fi( u)− 1) / z])
)

∨
(∨p

i=1 ϕ([(fi( u) + 1) / z])
)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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where f1, . . . , fp are all the linear functions used in constraints of the form
z = fi( y) or z < fi( y) in the formula ϕ and the function f( y) = y1.

Note that the proof of the existence of a sentence equivalent to Φ is
constructive. Furthermore, the simple proof sketched in this section contains
the main ingredients of the general proof. To eliminate an unrestricted
quantifier from ϕ( x) ≡ ∃zα(z,  x), we define some partition of U into a finite
union of intervals

⋃
i Ii( x), such that:

• if ϕ( a) is witnessed by c ∈ Ii( a), then it is witnessed by any c′ ∈ Ii( a);
• each interval Ii( x) is definable by an FO(SC ,M) formula, parametrically

in  x, and so is a representative of each such interval; and
• the maximum number of intervals Ii( x) is uniformly bounded for all  x.

5.6.5 Collapse Algorithm: the General Case

We start by listing some important properties of o-minimal structures. The
key is the uniform bound on the number of intervals in definable sets.

Theorem 5.6.7 (Uniform Bounds). If M is o-minimal, and γ( y, x) is a
first-order formula in the language of M, then there is an integer Kγ such
that, for each tuple  a from U , the set {x |M |= γ( a, x)} is composed of fewer
than Kγ intervals.

This is a very strong and deep result. O-minimality simply tells us that for
every γ( y, x) and every  a, the set γ(M, a) = {x |M |= γ( a, x)} is a finite union
of intervals. It is conceivable that the number of intervals in γ(M, a) depends
on  a in such a way that there is no bound on this number when  a ranges over
U . The Uniform Bounds Theorem tells us that such a situation is impossible:
there is an an upper bound on the number of intervals that depends only on
γ, and not on  a. As a side remark, the Uniform Bounds Theorem also implies
that a structure elementarily equivalent to an o-minimal one is o-minimal
itself.

We note, however, that for many familiar o-minimal structures, such as
the real field or the real ordered group, the Uniform Bounds Theorem is
trivial. Indeed, for the real field, the proof of o-minimality based on quantifier
elimination (given in Sect. 5.6.2) immediately yields uniform bounds, as the
number of intervals is determined by the number of polynomials used in the
formula, and by their degrees (recall that the number of intervals is deter-
mined by the total number of roots of all nonzero polynomials used in the
formula).

For every γ( y, x) in the language of M and constants, and every  a over
M, by the ith interval of γ( a, ·) we shall mean the ith interval of γ(M, a), in
the usual ordering on U . We shall use the following simple facts:
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• For every formula γ( y, x), and every i, there exists a first-order formula
denoted by γ̂i( y, x) such that M |= γ̂i( a, c) iff c is in the ith interval of
γ( a, ·). In what follows, we always assume that the distinguished variable
x is the last one.

• If the quantifier elimination procedure is effective, and atomic sentences
of M are decidable, then Kγ is computable for each γ. Indeed, for each i,
we can write a sentence Γi ≡ ∃x∃ y γ̂i( y, x) and check whether it is true
in M, using quantifier elimination and recursiveness of M. Eventually, we
find an i such that Γi is false; this follows from Theorem 5.6.7. Thus, Kγ

can be taken to be this i.
• Since intervals are first-order definable, we can use them in formulae.

For example, given a formula γ( y, x), a number i, and another formula
β( z, x), we can write a first-order formula α( y,  z, x) saying that every
x from the ith interval of γ( y, ·) satisfies β( z, x). This of course is just
∀x (γ̂i( y, x) → β( z, x)), but we shall occasionally use the interval notation
in formulae, to simplify the presentation.

Natural-Active Collapse: Eliminating One Existential Quantifier

This is the key case in proving the collapse, as the proof is by induction on
the formulae, and this is the only case where there is a need to do something.
We consider an FOact(SC ,M) formula

α( x, z) ≡ Qy1∈adom . . .Qym∈adom β( x,  y, z) ,

where β( x,  y,  z) is quantifier-free, and has the following properties:

• every atomic subformula of β is either an FO(SC) formula or an FO(M)
formula (where equalities are considered to be FO(M) formulae);

• there exists at least one FO(M) atomic subformula of β, and at least one
 y-variable (that is, m > 0); and

• z does not occur in atomic FO(SC ) subformulae.

Let F be the collection of all FO(M) atomic subformulae of β, and their
negations.

For formulae σ( x,  y, z), ρ( x,  y, z), and τ( x,  y, z) from F , for i ≤ Kρ and
j ≤ Kτ , we let σρτij ( x,  y,  s, t), where card( s) = card( t) = card( y), be the
formula defined as follows:

σρτij ( x,  y,  s, t) ≡ ∀u
(
(ρ̂i( x, s, u) ∧ τ̂j( x, t, u)) → σ( x,  y, u)

)
.

Let ϕ( x) be ∃z α( x, z).

Lemma 5.6.8. Let D be a nonempty finite SC-structure over M. Let
ϕ, α, β,F be as above. Let  a be a tuple over U . Then D |= ϕ( a) if and only
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if there exist  b, c ∈ adom(D)m, two formulae ρ( x,  y, z) and τ( x,  y, z) in F
and i ≤ Kρ, and j ≤ Kτ such that for the ith interval of ρ( a, b, ·) and the
jth interval of τ( a, c, ·), denoted by I0 and I1, respectively, the following three
conditions hold:

1. I0 ∩ I1 �= ∅.
2. For all  e ∈ adom(D)m, and all c, c′ ∈ I0 ∩ I1, we have M |= σ( a, e, c) ↔

σ( a, e, c′) for all σ ∈ F .
3. D |= α′( b, c, a), where α′( s, t,  x) is obtained from α( x, z) by replacing

each subformula σ( x,  y, z) from F by σρτij ( x,  y,  s, t).

Proof. For the only if part, assume that D |= ϕ( a). That is, D |= ∃zα( a, z).
Let d witness this; that is, D |= α( a, d). For every  e over adom(D) of the
same length as  y, and every atomic FO(M) subformula ρ( x,  y, z) of β, we
define Id( e, ρ) to be the maximal interval of ρ(M, a,  e) = {c | M |= ρ( a, e, c)}
containing d, in the case when M |= ρ( a, e, d), or the the maximal interval
of ¬ρ(M, a,  e) containing d, in the case when M |= ¬ρ( a, e, d). Let Id be the
collection {Id( e, ρ) |  e ∈ adom(D)|�y|, ρ ∈ F}. Since for each  e and ρ we have
d ∈ Id( e, ρ), we obtain that

⋂
Id �= ∅.

Now note that for any finite collection of intervals I1, . . . , Ip, there are two
indices i and j such that

⋂p
l=1 Il = Ii ∩ Ij . Then there are two intervals I0

and I1 in Id such that I0 ∩ I1 =
⋂
Id. Let  b be such that I0 is the ith interval

of ρ( a, b,M), and let  c be such that I1 is the jth interval of τ( a, c,M), where
ρ, τ ∈ F (that is, ρ, τ are either atomic FO(M) subformulae of ϕ or negations
of such atomic subformulae).

Let  e ∈ adom(D)|�y|. Pick any σ ∈ F and any c, c′ ∈ I0 ∩ I1. Since
I0 ∩ I1 =

⋂
Id, we obtain that c, c′ ∈ I0 ∩ I1 ⊆ Id( e, σ), which implies

M |= σ( a, e, c) ↔ σ( a, e, c′). This proves conditions 1 and 2 in the lemma.
To prove condition 3, notice that, for every FO(M) atomic subformula

σ( x,  y, z) of ϕ and every  e ∈ adom(D)|�y|, we have

σ( a, e, d) ↔ ∀u ∈ I0 ∩ I1 σ( a, e, u) ,

since I0 ∩ I1 =
⋂
Id.

Now, for any subformula γ( x,  y, z) of α( x, z), let γ′( s, t,  x,  y) be the result
of replacing each σ( x,  y, z) from F by σρτij ( x,  y,  s, t).

We can now restate the above equivalence as

(∗) D |= σ( a, e, d) ↔ σ′( a, e, b, c)

for every  e ∈ adom(D)|�y| (where  b and  c are the tuples necessary to define
I0 ∩ I1 above), where σ( x,  y, z) is atomic or negated atomic (i.e. σ ∈ F).

The above equivalence is preserved under Boolean combinations and
active quantification over variables from  y in σ. Hence we obtain (∗) for every
σ that is a subformula of α. Finally, this gives us

D |= α( a, d) ↔ α′( a, b, c) .
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Since D |= α( a, d), we conclude that D |= α′( a, b, c), proving condition 3.
To prove the if part, assume that there exist  b, c ∈ adom(D)m, ρ, τ ∈ F ,

and i ≤ Kρ, j ≤ Kτ such that for I0, I1 defined as in the statement of the
lemma, conditions 1, 2, and 3 hold. Let d be an arbitrary element of I0 ∩ I1.
We claim that D |= α( a, d), thus proving D |= ϕ( a).

Indeed, for every FO(M) atomic subformula σ( x,  y, z) of α, we have

σ( a, e, d) ↔ ∀u ∈ I0 ∩ I1 σ( a, e, u) ,

for every  e over adom(D) – this follows from condition 2. That is, σ( a, e, d) ↔
σρτij ( a, e, b, c). As before, since this equivalence is preserved under Boolean
combinations with FO(SC ) atomic formulae, and under active-domain
quantification over variables from  y, we obtain

D |= α( a, d) ↔ α′( b, c, a) ,

thus proving D |= α( a, d). The lemma is proved. �

The Transformation Algorithm

The algorithm that converts natural-semantics formulae into active-semantics
formulae works by induction on the structure of the formulae. In the case
of atomic formulae, there is no need to change anything. For Boolean
connectives, suppose that ϕ ≡ χ ∨ ψ. Let χact and ψact be FOact(SC ,M)
formulae equivalent to χ and γ. Then χact ∨ψact is an FOact(SC ,M) formula
equivalent to ϕ. We deal with negation and conjunction similarly.

The only nontrivial case is that of an existential quantifier ∃zα( x, z). To
handle it, we use Lemma 5.6.8. For now, assume that we are dealing with
nonempty SC -structures. By the induction hypothesis, we assume that α is
an FOact(SC ,M) formula. We first put α in the form required by Lemma
5.6.8 by taking the conjunction with a true sentence ∃y ∈ adom(y = y)
(since adom is nonempty) to ensure that there are quantifiers and atomic
FO(M) formulae, then using Lemma 5.5.2 to separate FO(M) and FO(SC )
formulae, and finally putting α into prenex form. Once α is in the right
form, we apply Lemma 5.6.8, noticing that it translates into a first-order
description. The step-by-step process of doing so is described in the
algorithm Natural-Active shown on the next page. Note that every
occurrence of an unrestricted quantifier ∀ or ∃ is of the form ∀yγ or
∃xγ, where γ is an FO(M) formula. Since M has quantifier elimination,
this means that every occurrence of unrestricted quantification can be
eliminated.

Summing up, we have the following.
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Algorithm Natural–Active

Input: FO(SC ,M) formula ϕ(�x)
Output: FOact(SC ,M) formula ϕact(�x)

1. If ϕ is an atomic formula, then ϕact = ϕ.
2. If ϕ = ψ ∗ χ, then ϕact = ψact ∗ χact where ∗ ∈ {∨,∧}; if ϕ = ¬ψ, then

ϕact = ¬ψact.
3. If ϕ = ∃x∈adom ψ, then ϕact = ∃x∈adom ψact.
4. Let ϕ(�x) = ∃z α0(�x, z).

4.1 Let α(�x, z) be a formula equivalent to α0
act which is of the form

Qy1∈adom . . .Qym∈adom β(�x, �y, z),

where β(�x, �y, �z) is quantifier-free and has the following properties: every
atomic subformula of β is either an FO(SC ) formula or an FO(M) formula;
there exists at least one FO(M) atomic subformula of β, m > 0, and z does
not occur in FO(SC ) subformulae.

4.2 Let F be the collection of all atomic FO(M) subformulae of α, and their
negations.

4.3 Let K = maxγ∈F Kγ .
4.4 For every pair of formulae ρ, σ ∈ F , and every i, j < K, define χρσij (�x,�s,�t)

to be the quantifier-free FO(M) formula equivalent to ∃u
(
ρ̂i(�x,�s, u) ∧

σ̂j(�x,�t, u)
)
. Note that | �s |=| �t |= m.

4.5 For each ρ, σ ∈ F , each i, j < K, and each τ ∈ F , define τρσij (�x, �y,�s,�t) as a
quantifier-free formula equivalent to

∀u
(
ρ̂i(�x,�s, u) ∧ σ̂j(�x,�t, u) → τ (�x, �y, u)

)

4.6 For each ρ, σ ∈ F and each i, j < K, define αρσij (�x,�s,�t) as α in which every

FO(M) atomic subformula τ (�x, �y, z) ∈ F is replaced by τρσij (�x, �y,�s,�t).
4.7 Let sameβ(�x, �r, u, v) be

∧
(ρ(�x, �r, u) ↔ ρ(�x, �r, v)), where the conjunction is

taken over all the FO(M) atomic subformulae ρ of β.
4.8 For each ρ, σ ∈ F , each i, j < K, define ηρσij (�x,�s,�t, �r) as a quantifier-free

formula equivalent to

∀u, v
(

(ρ̂i(�x,�s, u) ∧ σ̂j(�x,�t, u) ∧ ρ̂i(�x,�s, v) ∧ σ̂j(�x,�t, v)) → sameβ(�x, �r, u, v)
)
.

4.9 For each ρ, σ ∈ F and each i, j < K, define πρσij (�x,�s,�t) as ∀�r ∈
adom ηρσij (�x,�s,�t, �r).

4.10 Output, as ϕact(�x), the formula

∃�s∈adom ∃�t∈adom
∨

ρ,σ∈F

∨

i,j<K

(χρσij (�x,�s,�t) ∧ πρσij (�x,�s,�t) ∧ αρσij (�x,�s,�t)).
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Proposition 5.6.9. Let M be o-minimal and admit quantifier elimination.
Let ϕ( x) be any FO(SC ,M) first-order formula, and let ϕact be the output of
Natural-Active on ϕ. Then, for every nonempty finite SC-structure D,
D |= ∀ x ϕ( x) ↔ ϕact( x). Furthermore, if M is recursive and the quantifier
elimination procedure is effective, then there is an effective procedure yielding
such a ϕact for an input ϕ. �

To conclude the proof of Theorem 5.6.4, we have to deal with the case
of adom(D) being empty. Let ϕ( x) be an FO(SC ,M) formula. Let ϕ′

∅( x) be
obtained from ϕ by replacing each occurrence of R(· · · ), where R ∈ SC , by
false. Note that ϕ′

∅ is an FO(M) formula. Let ϕ∅ be a quantifier-free formula
equivalent to ϕ′

∅. A simple induction on formulae shows that for the empty
SC -instance, ∅SC , it is the case that ∅SC |= ϕ( a) iff M |= ϕ∅( a), for every  a.
Thus, an FOact(SC ,M) formula

ϕ′( x) ≡ [(∃x∈adom (x = x)) ∧ ϕact( x)]
∨[(¬∃x∈adom (x = x)) ∧ ϕ∅( x)]

has the property that D |= ∀ x ϕ( x) ↔ ϕ′( x), for arbitrary D. This concludes
the proof of Theorem 5.6.4. �

5.6.6 Collapse Without O-minimality

We have seen that quantifier elimination is necessary for natural-active col-
lapse. What about o-minimality? It turns out that there are non-o-minimal
structures that admit this collapse. Consider the structure Z = 〈Z,+, <〉. It is
not o-minimal: for example, the formula ϕ(x) given by ∃y (y + y = x) defines
the set of even numbers. The same example, though, shows that natural-active
collapse fails over Z: the Boolean query ∃x (S(x) ∧ϕ(x)) is not expressible in
FOact({S},Z), since ϕ cannot be expressed by a quantifier-free formula.

However, it is well known that Z admits quantifier elimination in an
extended signature. Let x ∼k y iff x = y(mod k). These relations are definable
over Z, and the structure Z0 = 〈Z,+, <, 0, 1, (∼k)k>0〉 does admit quantifier
elimination. We thus have an example of a structure that has quantifier
elimination, is not o-minimal, and admits natural-active collapse.

Proposition 5.6.10. Z0 admits the natural-active collapse.

Proof sketch. The proof is again by induction, and we consider the only
nontrivial case of existential quantification. To simplify the notation, assume
that we have a sentence Φ ≡ ∃zϕ(z), where

ϕ(z) ≡ Qy1∈adom . . .Qym∈adom α(z,  y),

and where each Q is either ∃ or ∀.
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Using Lemma 5.5.2, we can assume that α is a Boolean combination of:

1. atomic SC -formulae with free variables among  y;
2. linear constraints f(z,  y) ϑ 0, where f is a linear function and ϑ is an =,

or <, or ≤ comparison;
3. constraints of the form f(z,  y) ∼c p for c ∈ N and 0 ≤ p < c, where again

f is a linear function.

Let c be the maximum number for which one of the ∼c relations occurs in α.
Let χi(x) enumerate all satisfiable formulae of the form

∧

1<b≤c
x ∼b pb,

where pb < b, and similarly let χmi ( y) enumerate all satisfiable conjunctions
χi1(y1) ∧ . . . ∧ χim(ym). Then ϕ(z) is equivalent to

∃z
(∨

i

χi(z) ∧Qy1∈adom . . .Qym∈adom
(∨

j

χmj ( y) ∧ α(z,  y)
))

.

Note that if we know all the residues for z and  y modulo all the positive
integers not exceeding c, then we can infer the truth value of each constraint
of the form f(z,  y) ∼b p for every b ≤ c and pb < b. Thus, we can assume
without loss of generality that constraints of the form f(z,  y) ∼b p do not
appear in α, unless f is identically z or one of the yis.

To eliminate ∃z from the formula above, we proceed just as in the case of
FO + Lin. Let g1( y), . . . , gl( y) enumerate all the linear functions that occur
in constraints of the form zϑgi( y), and the function g( y) = y1. We fix a finite
set A, and define a set B0 as {gi( a) | i ≤ l, a ∈ Am}. Note that A ⊆ B0. Let
b1 < . . . < bk list the elements of B0.

Suppose we have an SC -structure D with adom(D) = A, and suppose
that ϕ(z0) holds. Assume that bi < z0 < bi+1. Then the same argument as
in the proof of the collapse for FO + Lin shows that any other z′0 ∈ (bi, bi+1)
that agrees with z0 on all χjs also satisfies ϕ. This shows the following: if there
is a z0 satisfying ϕ, then there is one such that |z0 − bi| ≤ c for some bi. In
particular, if D |= Φ, then there exists a z0 ∈ B1 such that D |= ϕ(z0), where
B1 = {b + p, b− p | b ∈ B0, 0 ≤ p ≤ c}. Just as in the case of FO + Lin, this
set B1 is definable in FO(SC ,Z0). Thus, under the assumption that α uses
only ∼k relations to compare a variable with a constant, we can rewrite Φ as

∃ u∈adom
∨

−c≤b≤c

l∨

i=1

ϕ((gi( u) + b) / z),

thus eliminating an unrestricted quantifier ∃z. Notice that, unlike the case of
FO + Lin, we need m additional active-domain quantifiers (instead of 2m),
as the proof does not require witnesses which are middles of some intervals
(bi, bi+1). �
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5.6.7 Natural-Generic Collapse

The natural-generic collapse result says that order-generic queries in
FO(SC ,M) can be expressed in FO(SC , <). We now derive this collapse
result as a corollary to the two collapse results shown so far.

Corollary 5.6.11 (Natural-Generic Collapse). Let M = 〈U,Ω〉 be an
o-minimal structure. Then it admits natural-generic collapse.

Proof. Let Q be an order-generic query definable in FO(SC ,M). Consider a
definitional expansion M′ of M obtained by extending Ω with new symbols
for all M-definable predicates. Such an M′ admits quantifier elimination,
and then, by use of natural-active collapse, we obtain that Q is definable
in FOact(SC ,M′). From the active-generic collapse, we conclude that Q is
definable in FOact(SC , <) (and thus in FO(SC , <)). �

While the active-generic collapse holds for all ordered structures, and the
bounds of Theorem 5.6.4 are the best currently known for the natural-active
collapse, Corollary 5.6.11 has been extended to a larger class of structures.
The proof of the result is rather involved, but we shall present a statement
of the result below.

The new condition on the structures uses the Vapnik-Chervonenkis (VC)
dimension, a central concept in computational learning theory. Suppose that
S is an infinite set, and C ⊆ 2S is a family of subsets of S. Let F ⊂ S be
finite; we say that C shatters F if the collection {F ∩ C | C ∈ C} is 2F . The
Vapnik-Chervonenkis dimension of C, VCdim(C), is the maximal cardinality
of a finite set shattered by C. If arbitrarily large finite sets are shattered by
C, we let VCdim(C) = ∞.

This applies to first-order structures as follows. Let M = 〈U,Ω〉, and let
ϕ( x,  y) be a formula in the language of M with | x| = n, | y| = m. For each
 a ∈ Un, we define ϕ( a,M) = { b ∈ Um | M |= ϕ( a, b)}, and let Fϕ(M) be
{ϕ( a,M) |  a ∈ Un}. Families of sets arising in such a way are called definable
families.

Definition 5.6.12. M is said to have finite VC dimension if every definable
family in M has finite VC dimension. �

Examples of structures that have finite VC dimension include:

• every o-minimal structure;
• 〈N,+, <〉 and 〈Z,+, <〉;
• every linear order;
• ordered Abelian groups (that is, Abelian groups in which addition is

monotone with respect to the order).

In particular, the class is a proper extension of the class of all o-minimal
structures. The following is a deep result which we present here without proof:
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Fig. 5.5. Summary of collapse results

Theorem 5.6.13. Let M be an ordered structure that has finite VC
dimension. Then M admits natural-generic collapse. �

We shall discuss the relationship between the VC dimension and various
forms of collapse in Sect. 5.8.

The diagram in Fig. 5.5 summarizes what has been achieved towards
proving the collapse results.

5.7 Model Theory and Collapse Results

While most collapse results proved so far apply to o-minimal structures, we
have seen a couple of examples outside of the o-minimal world. So it is natural
to ask what really causes the natural-active or other forms of collapse: are
there some properties of the underlying structure that cause it to happen?

The goal of this section is to give a partial answer to this question. We
start by presenting a technical condition, called pseudo-finite homogeneity,
that ensures a form of collapse that is closely related to natural-active
collapse. We then describe a couple of model-theoretic conditions that are
often easy to verify, and that imply pseudo-finite homogeneity and thus
the collapse. We shall see a number of examples of collapse outside of the
o-minimal context that are implied by those conditions.

We start with the following definition.

Definition 5.7.1. We say that a structure M admits restricted quantifier
collapse if for every SC , every FO(SC ,M) formula is equivalent to an
FO(SC ,M) formula in which SC-relations do not appear in the scope of
unrestricted quantifiers.
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For example, in the formula ∃x∈adom∀y∈adom (S(x, y) → ∀z∃u x2+y =
z2 + u), the SC -relation S appears only in the scope of two active-
domain quantifies ∃x ∈ adom and ∀y ∈ adom . However, for the formula
∃u∃v (∀x∈ adom∀y ∈ adom S(x, y) → y = u · x + v) this is not the case, as
S appears in the scope of the quantifiers ∃u and ∃v.

Note that if M admits restricted quantifier collapse, and if M′ is the
expansion of M with all definable predicates, then every FO(SC ,M) formula
is equivalent to an FOact(SC ,M′) formula. In particular, if M admits
quantifier elimination, then restricted quantifier collapse implies natural-
active collapse. Furthermore, restricted quantifier collapse always implies
natural-generic collapse. Thus:

restricted
quantifier

collapse
+ QE =

natural-
active

collapse
⇒

restricted
quantifier

collapse
⇒

natural
generic

collapse

Remark. Although we shall provide all the necessary model-theoretic def-
initions here, the reader needs some infinite model theory background to
understand the proofs in this section. In particular, many proofs using tech-
niques from classical infinite model theory are only sketched. We nevertheless
encourage the reader without such a background to read this section (perhaps
skipping the proofs) to see many new examples of collapse results.

We shall also assume that we are dealing with structures in a finite or
countable language; this assumption can easily be avoided at the expense of
some additional arguments involving infinite cardinals, which we prefer not
to deal with here.

5.7.1 Pseudo-finite Homogeneity

We start with a few definitions from model theory. For a structure M,
its theory is denoted by Th(M). Two structures M1 and M2 of the same
language are elementarily equivalent (written M1 ≡ M2) if their theories
are the same; that is, if they satisfy the same FO-sentences. For a subset
A of M, and an n-tuple  a, the n-type of  a over A (or just the type, if n is
understood), tpM( a/A), is the set of all formulae in n free variables, in the
language of M plus constants for the elements of A, that are satisfied by  a.

A model M is called ω-saturated if every consistent 1-type over a finite
subset of M is realized in M. It is known that, for every M, there exists an
ω-saturated elementary extension M′.

Let L(SC ,M) be the language that is the expansion of L(M), the language
of M, with all the relation symbols in SC . A structure in this language is a pair
(M′, D), where M′ is a structure in the language of M and D is an interpreta-
tion of SC symbols over M′ (not necessarily finite). Let F(SC ,M) be the the-
ory of all L(SC ,M) structures (M′, D), where M′ |= Th(M) and D is finite.
We now call an SC -structure D on M pseudo-finite if (M, D) |= F(SC ,M).
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Definition 5.7.2. We say that M has ω-pseudo-finite homogeneity property,
or ω-PFH for short, if for any model M′ of Th(M), any two pseudo-finite
SC-structures D1, D2 on M′, and any bijective and L(M)-elementary map
h : D1 → D2 such that (M′, D1, D2, h) is ω-saturated, it is the case that for
every a ∈M′ there exists b ∈M′ such that h ∪ {(a, b)} is elementary.

Theorem 5.7.3. If M has ω-PFH, then it admits restricted quantifier
collapse.

Proof sketch. Let ϕ be an FO(SC ,M) sentence. Assume that ϕ is not equiv-
alent to any restricted quantifier sentence. Let αi enumerate all restricted
quantifier FO(SC ,M) sentences; then, for every αi, we can find a model
(Mi, D

1
i , D

2
i ) such that Mi ≡ M, D1

i |= ϕ, D2
i |= ¬ϕ, and D1

i , D
2
i agree on

αi. By compactness, we have a model (M′, D1, D2) such that D1, D2 agree
on all FOact(SC ,M) sentences, and D1 |= ϕ and D2 |= ¬ϕ.

A standard model-theoretic argument shows that we can further assume
that there is a partial L(SC ,M)-isomorphism h : D1 → D2 that is also an
elementary map in the language of M, and, furthermore, that (M, D1, D2, h)
is ω-saturated. By ω-PFH, for any k > 0, h can be extended k times back and
forth to an L(M)-elementary map, which is a partial L(SC ,M)-isomorphism,
since its domain includes adom(D1) and its range includes adom(D2). Thus,
h is an L(SC ,M)-elementary map, which contradicts the statement that
D1 |= ϕ and D2 |= ¬ϕ. �

The notion of pseudo-finite homogeneity may not be a very easy one
to check for a given structure; however, other model-theoretic properties
imply it, and thus they imply restricted quantifier collapse. We shall see two
examples below.

5.7.2 Finite Cover Property and Collapse

Similarly to the definition of ω-saturation, we can define ω1-saturated
structures by requiring that types over countable sets (rather than just
finite sets) be realized. By requiring that the structure (M′, D1, D2, h) in the
definition of PFH be ω1-saturated, we obtain a stronger notion of ω1-PFH.

We now say that M has the pseudo-finite saturation property, or PFS for
short, if for any model M′ of the theory of M and any pseudo-finite set A in M′

such that (M′, A) is ω1-saturated, every consistent 1-type over A is realized
in (M′, (a)a∈A). This property is easier to connect to other model-theoretic
properties, and, furthermore, we can state the following proposition.

Proposition 5.7.4. Pseudo-finite saturation implies ω1-PFH, and thus it
implies restricted quantifier collapse.

Proof. Let (M′, D1, D2, h) be ω1-saturated, where D1, D2 are pseudo-finite.
Let a ∈ M′, A = adom(D1), and p = tpM′(a/A). Let h(p) = {ϕ(x, h( a)) |
ϕ(x, a) ∈ p}. Then h(p) is a type over adom(D2); by pseudo-finite saturation,
it is realized by some b ∈ M′, and thus h ∪ {(a, b)} is elementary. �
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One known result about pseudo-finite saturation is that it holds for
structures that do not have the finite cover property. Recall that a structure
M has the finite cover property if there is a formula ϕ(x,  y) such that, for
every n > 0, one can find tuples  a1, . . . , an such that ∃x

∧
j �=i ϕ(x, aj) holds

for each i ≤ n, but ∃x
∧
j≤n ϕ(x, aj) does not hold. Since every M that

does not have the cover property has pseudo-finite saturation, it also admits
restricted quantifier collapse.

In model theory, a number of examples of structures without the finite
cover property have been collected; for example, every structure whose theory
is categorical in every uncountable power is such a structure. Some of the
best known examples are:

• The field of complex numbers 〈C,+, ·〉 (in fact, any algebraically closed
field of characteristic p, where p is zero or prime).

• 〈N, π〉, where π : N → N is a permutation without finite cycles.
• 〈N, succ〉.

Corollary 5.7.5. The three structures above admit restricted quantifier
collapse.

As another example, we consider the first-order theory of finitely many
successor relations. This is a decidable theory (in fact, even the monadic
second-order theory is decidable, by a classical result by Büchi) with many
applications in computer science. Let Σ be a finite alphabet, and let Σ∗

be the set of all finite strings over Σ, with ε being the empty string. For
each a ∈ Σ, let fa be the unary function that appends a at the end of its
argument: fa(x) = x · a. We now have the following.

Proposition 5.7.6. For any finite Σ, the structure 〈Σ∗, ε, (fa)a∈Σ〉 admits
restricted quantifier collapse.

Proof sketch. We show that M = 〈Σ∗, ε, (fa)a∈Σ〉 does not have the finite
cover property. We need a little preparation. Our proof will use the following
known result: M does not have the finite cover property if (a) no formula
α( x,  y) defines an infinite linear order on M, and (b) for every α( x,  y), there
is a formula β( x) such that β( x) holds iff the number of  y for which α( x,  y)
holds is infinite.1

Let ga(x) be the following definable function: if the last symbol of x
is a, then g removes it; otherwise ga(x) = x. Then it is easy to see that
1 The reader familiar with this subject will notice that our condition (b) is not

sufficient to conclude that M does not have the finite cover property: instead, one
would need to show a stronger property (b′): namely, for any formula α(�x, �y, �z)
such that α(M, �z) is an equivalence relation E�z for every �z, there is a formula
β(�z) such that β(�z) holds iff E�z has finitely many equivalence classes. However,
using quantifier elimination for M, one can show that M eliminates imaginaries
and thus each equivalence relation is of the form {(�u, �w) | f(�u) = f(�v)} for some
definable function f . Therefore, (b) implies (b′).
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〈Σ∗, ε, (fa)a∈Σ〉 has quantifier elimination in the language 〈(fa, ga)a∈Σ , ε〉.
Using this, one easily concludes (a).

To show (b), we define the distance between two strings x and y, d(x, y),
as the minimal length of a term t built from fa, ga, ε such that t(x) = y. If
one thinks of Σ∗ as an infinite |Σ|-ary tree, then d(u, v) is simply the distance
in this tree. We define d( x,  y) as the minimal distance between a component
of  x and a component of  y. Note that for each fixed i, d( x,  y) < i is definable.

Given a formula α( x,  y), assume without loss of generality that it is a
Boolean combination of formulae v = t(u), where v, u are variables among
 x,  y and the ts are terms. Let k be the maximum length of a term in α. We
define γ( x) as

∀ y α( x,  y) →
∧

i

(d(yi,  x) < m(k + 2)) ∧ (d(yi, ε) < m(k + 2)),

where m is the length of  y. We claim that γ( x) holds iff the number of  y such
that α( x,  y) holds is finite. Then we take β ≡ ¬γ.

One direction is trivial. Assume that γ( x) does not hold; then one can
find  y for which α( x,  y) holds, and divide  y into two parts,  y1 and  y2, such
that d( y2, ( y1,  x, ε)) > k + 1. Now let s be a sufficiently long string; define
s ·  y2 as the result of adding s as a prefix to all strings in  y2. It is clear that
α( x, ( y1, s ·  y2)) still holds, which completes the proof, since s is arbitrary. �

The results of this section have some limitations; in particular, all
structures with the pseudo-finite saturation property are stable, which means
that one cannot define infinite linear orders in them. To deal with ordered
structures (which are the ones most typically used in applications), we
present a different model-theoretic notion that implies ω-PFS.

5.7.3 Isolation and Collapse

Let M be a structure, let A be a subset of it, and let p be a 1-type over A.
Let p′ be a subset of p. We say that p′ isolates p if p is the only type over A
that contains p′.

Definition 5.7.7. We say that M has the isolation property if, for every
model M′ of the theory of M, any pseudo-finite set A in M′, and any element
a, there is a finite set A′ ⊆ A such that tpM′(a/A′) isolates tpM′(a/A).

This gives us a number of new examples of structures that admit restricted
quantifier collapse, thanks to the following proposition.

Proposition 5.7.8. If M has the isolation property, then it has ω-PFH (and
thus admits restricted quantifier collapse).

Proof. Assume that we have an ω-saturated (M′, D1, D2, h), where D1, D2

are two pseudo-finite SC -structures, and h is elementary. Let a ∈ M′. Let
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Ai = adom(Di); then A1, A2 are pseudo-finite sets. Let p = tpM′(a/A1); by
isolation, there is a finite set A′

1 ⊆ A1 such that p′ = tpM′(a/A′
1) isolates p.

For each ϕ ∈ p, let ϕh be ϕ in which every c ∈ A1 is replaced by
h(c). Since h is elementary, any finite conjunction of formulae ϕh, ϕ ∈ p,
is satisfiable in M′, and thus, by compactness, h(p) = {ϕh | ϕ ∈ p} is
consistent. Furthermore, a straightforward compactness argument shows
that h(p′) isolates h(p). Since A′

1 is finite, h(p′) is countable, and thus, by
saturation, it is realized by an element b ∈ M′. Since h(p′) isolates h(p), b is
of type h(p), which shows that h ∪ {(a, b)} is elementary. �

As the simplest example of the isolation property, consider the theory
of linear order, whose models are ordered sets 〈U,<〉. Let M be such a
structure, and let A be a pseudo-finite set. For every a ∈ U and every finite
set A0, either there are two consecutive elements of A0, say b < c, such that
(b, c) ∩ A0 = ∅ and b ≤ a ≤ c, or a > m, where m is the maximal element
of A0, or a < m′, where m′ is the minimal element of A0. As this condition
is FO-definable, it must be true for the pseudo-finite set A. We claim that
tpM(a/A) is isolated by tpM(a/A′), where A′ = {b, c}, or A′ = {m}, or
A′ = {m′}, depending on which of the three cases is true. We prove this for
the case of b ≤ a ≤ c; the other cases are similar.

To show that tpM(a/A′) isolates tpM(a/A), we must prove that for any
a′, (M, a, b, c) ≡ (M, a′, b, c) implies (M′, a, (d)d∈A) ≡ (M′, a′, (d)d∈A). This
is easy to see by an Ehrenfeucht–Fräıssé game argument. By the assumption,
the duplicator has a winning strategy on ([b, c], a) and ([b, c], a′). For the
winning strategy on (M′, a, (d)d∈A) and (M′, a′, (d)d∈A), the duplicator uses
the above strategy for moves in the interval [b, c], and copies the spoiler’s
moves elsewhere.

What about more complex examples? First, it is easy to extend the
example above to the case of ordered sets with some additional unary
relations. That is:

Corollary 5.7.9. Let M be a structure with one binary relation, interpreted
as a linear ordering, and finitely many unary relations. Then M admits
restricted quantifier collapse. �

As our next example, we revisit the theory of k successor relations, that
is, 〈Σ∗, ε, (fa)a∈Σ〉. This structure is the infinite k-ary tree in which we have
only successor relations available. It is considered most often in the context of
monadic second-order logic, which can define the prefix relation in addition to
the successor relations. So we now consider an extension, 〈Σ∗, ε, (fa)a∈Σ ,≺〉,
where x ≺ y means that x is a prefix of y. The question is: does this structure
admit the collapse?

The technique of Sect. 5.7.2 does not work here, since 〈Σ∗, ε, (fa)a∈Σ ,≺〉
does have the finite cover property: structures that do not have it cannot
define an infinite linear order; on the other hand, it is easy to define the
lexicographic ordering in the presence of ≺. This turns out to be one of the
examples where isolation does the job.
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Proposition 5.7.10. M = 〈Σ∗, ε, (fa)a∈Σ ,≺〉 admits restricted quantifier
collapse.

Proof. Let x  y mean x ≺ y or x = y. Let x , y be the longest common
prefix of the strings x and y, and let x − y be defined as follows: if x = y · z,
then x− y = z; if y � x, then x − y = ε. Let L ⊆ Σ∗ be a star-free
language. Define PL to be the set of pairs of strings (x, y) such that y  x and
x − y ∈ L. It is not hard to show that PL is definable in 〈Σ∗, ε, (fa)a∈Σ ,≺〉
(using the fact that star-free languages are exactly those definable over
strings considered as finite models).

Before we prove the collapse, we must collect a few more properties of
M. The following is true for any finite (and hence pseudo-finite) set A in
any structure M′ elementarily equivalent to M. The meet of all elements of
A equals the meet of some pair of elements of A. Moreover, for any c ∈ M′,
c,A, the longest prefix of c that is also a prefix of some element of A, equals
c , a for some a ∈ A. Furthermore, there exist four not necessarily distinct
elements a1, a2, a3, a4 ∈ A such that a1 , a2  c ,A  a3 , a4, and there are
no a′, a′′ such that a1 , a2 ≺ a′ , a′′ ≺ a3 , a4.

We shall use the following known result on definability in M. Every formula
ϕ( x) is equivalent to a disjunction of the formulae αi( x)∧βi( x) such that the
following is true. Each αi( x) is a quantifier-free formula that specifies, for each
xi, xj , xk, xl, whether xi , xj = ε and whether xi , xj ≺ xk , xl. Each βi( x)
is a conjunction of the formulae PL(xi , xj , xk , xl) where αi( x) implies that
there are no elements of the form xp,xq such that xi,xj ≺ xp,xq ≺ xk,xl.

We now show that M has the isolation property, and thus admits restricted
quantifier collapse. Let M′ be elementarily equivalent to M, let A be a pseudo-
finite set, and let c ∈ M′. Find (at most) four elements a1, a2, a3, a4 ∈ A
such that a1 , a2  c , A  a3 , a4, and there are no a′, a′′ such that
a1 , a2 ≺ a′ , a′′ ≺ a3 , a4. Then the above result characterizing definability
in M easily implies that tpM′(c/{a1, a2, a3, a4}) isolates tpM(c/A). �

The notion of isolation could just as well be called ω-isolation: a type
over a set is isolated by a type of a subset of cardinality < ω. We could then
introduce a notion of λ-isolation for any cardinal λ. The cardinal λ of interest
to us here is ω1; the notion of ω1-isolation says that tpM(a/A), for A pseudo-
finite, is isolated by tpM(a/A′), where A′ ⊆ A is finite or countable. Just
as ω-isolation implies ω-PFH and restricted quantifier collapse, ω1-isolation
implies ω1-PFH, and thus the same collapse. We shall now use ω1-isolation to
give an alternative proof of restricted quantifier collapse for Z = 〈Z,+, <〉. We
already know this result: Proposition 5.6.10 showed natural-active collapse
for Z0, which is an expansion of Z that has quantifier elimination. But we
provide the proof below to illustrate the power of model-theoretic techniques.

Proposition 5.7.11. Z admits restricted quantifier collapse.

Proof. Let M be a model of Th(Z), and A a pseudo-finite set in M. Since A is
pseudo-finite, for any a, either there exist a1 < a2 ∈ A such that a1 ≤ a ≤ a2

and (a1, a2) ∩ A = ∅, or a > m, where m is the maximal element of A, or
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a < m′, where m′ is the minimal element of A. We assume, without loss of
generality, that we are dealing with the first case.

Let f( y) be a linear function with integer coefficients. For any finite set
A and an element a, we have a uniquely defined tuple  bA,f− of elements of
A such that f( bA,f− ) ≤ a, and for any other tuple  c of elements of A, either
f( c) > a, or f( c) < f( bA,f− ), or f( c) = f( bA,f− ) and  c is above  bA,f− in the
lexicographic ordering. In other words,  bA,f− is the lexicographically smallest
tuple of elements of A on which f reaches its maximum value which does not
exceed a. Since the above can be stated in FO, such a tuple  bA,f− is uniquely
determined for a pseudo-finite set A.

Similarly, we define  bA,f+ to be the lexicographically smallest tuple of
elements of A on which f reaches its minimum value which lies above a.
Again, this is well defined for a pseudo-finite set A.

We now let A′ be the set that has a1, a2 and all the components of all
 bA,f− and  bA,f+ as f ranges over all linear functions with integer coefficients.
Since such tuples are unique for each f , the set A′ is countable. We claim
that tpZ(a/A′) isolates tpZ(a/A).

For this purpose, it is convenient to use Z0, the expansion of
Z with ∼k, k > 1, which admits quantifier elimination. Suppose
tpZ(a/A′) = tpZ(a′/A′); it then suffices to show that the Z0-atomic
types of a and a′ over A are the same. As tpZ(a/A′) specifies all a− a1 ∼k nk
and a2 − a ∼k n′

k relations for all k > 1, and all constants a1, a2 ∈ A′, a
and a′ agree on all the formulae f(x,  y)− g(x,  y) ∼k nk, where f, g are linear
functions,  y takes values in A, and 0 ≤ nk < k. By quantifier elimination
for Z0, we may assume that other atomic formulae are of the form xϑf( y),
where f is a linear function with integer coefficients, and ϑ is one of <,>,=.
Suppose that a > f( b) holds for some  b over A. Then either f( b) < f( bA,f− ),
or f( b) = f( bA,f− ) and  bA,f− is lexicographically smaller than  b. Since all the
components of  bA,f− are in A′ and the types of a and a′ over A′ are the same,
we conclude that a′ > f( bA,f− ) and thus a′ > f( b). The cases in which ϑ is >
or = are similar. Hence, tpZ0

(a/A) = tpZ0
(a′/A), which proves ω1-isolation. �

In conclusion, we remark that the techniques of the two previous subsec-
tions – using the finite cover property or isolation to prove the collapse – are
completely disjoint. While every structure that does not have the finite cover
property is stable, every structure with the isolation property is unstable; in
particular, one can define an infinite linear order on such a structure.

5.8 The VC Dimension and Collapse Results

In this section we consider the relationship between the Vapnik-Chervonenkis
dimension, a concept from statistics and learning theory, and collapse results.
We have seen one powerful result (Theorem 5.6.13): any structure whose
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definable families have finite VC dimension admits natural-generic collapse.
It turns out that the VC dimension is even more closely related to collapse
results: namely,

natural-
active

collapse
⇒

restricted
quantifier

collapse
⇒ finite

VC dimension ⇒
natural-
generic

collapse

as the result below demonstrates.

Theorem 5.8.1. Let M admit restricted quantifier collapse. Then M-
definable families have finite VC dimension.

Proof. In this proof, we shall use a complexity class AC0/poly defined as
follows. (We use a slightly nonstandard definition, in terms of FO-formulae
rather than circuits, as it is more convenient for our purposes.) Consider a
class of finite SC -structures C, and assume that adom(D) of size n is always
of the form {0, . . . , n− 1}. Such a class belongs to AC0/poly if there exists a
vocabulary SC ′ disjoint from SC , a function h from N to SC ′-structures, and
a sentence ΦC of FO(SC ∪ SC ′) such that (a) adom(h(n)) ⊆ {0, . . . , n − 1},
and (b) for each SC -structure of size n, we have D ∈ C iff (D,h(n)) |= ΦC .
In other words, we use ΦC to decide whether D ∈ C, and ΦC uses D as well
as some polynomial-size “advice” h(n). Some strong lower bounds have been
proved for AC0/poly; they imply, for example, that parity, and importantly
for us, 3-colorability, are not in AC0/poly.

Now assume that M admits restricted quantifier collapse and has infinite
VC dimension. We obtain a contradiction by showing that 3-colorability is in
AC0/poly.

To proceed, we need the following known (and nontrivial) result: if M has
infinite VC dimension, then there is a formula ϕ( x, y) (where y is a single vari-
able) that defines a family of infinite VC dimension. Take this formula ϕ; then,
for each n, there is a set Yn ⊂ M of size n that is shattered by {ϕ( a,M) |  a}.

Now expand the language of M with a binary relation E (to be interpreted
as a finite graph), and consider the sentence Ψ :

∃ x1∃ x2∃ x3

[

∀y∈adom

⎛

⎝
(ϕ( x1, y) ∧ ¬ϕ( x2, y) ∧ ¬ϕ( x3, y))

∨ (¬ϕ( x1, y) ∧ ϕ( x2, y) ∧ ¬ϕ( x3, y))
∨ (¬ϕ( x1, y) ∧ ϕ( x2, y) ∧ ϕ( x3, y))

⎞

⎠ ∧

∀y1∈adom∀y2∈adom E(y1, y2) → ¬

⎛

⎝
(ϕ( x1, y1) ∧ ϕ( x1, y2))

∨ (ϕ( x2, y1) ∧ ϕ( x2, y2))
∨ (ϕ( x3, y1) ∧ ϕ( x3, y2))

⎞

⎠
]

.

The fact that ϕ defines a family that shatters each Yn lets us model second-
order quantifiers over Yn; in particular, for any graph G with adom(G) ⊆ Yn,
G |= Ψ iff G is 3-colorable.
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Since M admits restricted quantifier collapse, we may assume that Ψ is
equivalent to a sentence Ψ ′ of the form

Qz1∈adom . . .Qzm∈adom α( z),

where α is a Boolean combination of formulae E(zi, zj) and formulae βl( z),
l ≤ k, over M.

For each βl which has p free variables, introduce a new p-ary relation
symbol Rl. Let SC ′ = {Rl | l ≤ k}. Next, for each n, fix a bijection
πn : {0, . . . , n − 1} → Yn. Let h(n) be an SC ′-structure on {0, . . . , n − 1} in
which a tuple (a1, . . . , ap) belongs to Rl iff βl(πn(a1), . . . , πn(ap)) holds in M.
Finally, let Ψ ′′ be Ψ ′ in which every subformula βl( u) is replaced by Rl( u). We
then conclude that, for any graph G on nodes {0, . . . , n− 1}, (G, h(n)) |= Ψ ′′

iff G is 3-colorable, which contradicts the fact that 3-colorability is not in
AC0/poly. This proves the theorem. �

A natural question, then, is the following: what kind of bounds on
FO(SC ,M) can one show for structures M of infinite VC dimension? Clearly
we cannot hope to prove natural-active or restricted quantifier collapse; but
is it possible to prove some meaningful bounds, and if so, how?

While our understanding of the limits of collapse results is by no means
complete, in the list below we shall give three examples of very different
behaviors of FO over finite models embedded into structures with infinite
VC dimension.

• In some cases, there is no collapse at all. We have seen that any computable
query over finite SC -structures can be expressed in FO(SC ,N), and N has
infinite VC dimension. (To see this directly, assume as we did before that
a set X = {x1, . . . , xk} with x1 < . . . < xk is coded by 2x1 · 3x2 · . . . · pxkk
where pk is the kth prime. Let ϕ(x, y) say that y is in the set coded by x.
Then the family {ϕ(n,N) | n ∈ N} has infinite VC dimension.)

• In another example, we get a collapse to a logic which is more pow-
erful than FO. Namely, we shall show in Section 5.8.1 that, over the
random graph RG, FO(SC ,RG) collapses to active MSO, that is,
MSOact(SC ,RG). Recall that MSO (monadic second-order logic) extends
FO with quantification over sets. In the active version MSOact, this set
quantification is over subsets of adom(D).

• In the last example, we do not know whether natural-generic collapse
can be proved. Nevertheless, we succeed in showing that generic queries
can be evaluated in AC0. As AC0 is one of very few complexity classes
for which lower bounds have been proved, this suffices to conclude that
queries such as parity are not expressible. The structure for which this
result is proved (in Section 5.8.2), extends 〈Σ∗, fa,≺〉 from the previous
section by adding string length comparisons.
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5.8.1 Random Graph and Collapse to MSO

In this section, we give an example of a nicely behaved structure, with a decid-
able theory and quantifier elimination, that does not admit natural-active
collapse. This structure, however, admits a collapse to monadic second-order
logic.

This structure is the random graph RG = 〈U,E〉 on a countably infinite
set U : that is, any model that satisfies every sentence that is true in almost all
finite undirected graphs. Here “almost all” is with respect to the uniform prob-
ability distribution: E(a, b) holds with probability 1/2, independently for each
pair (a, b). It is known that the set of all such sentences forms a complete the-
ory with infinite models, and that this theory is decidable and ω-categorical.
The latter means that up to isomorphism, there is only one countable model.

Other, nonprobabilistic descriptions of RG exist. For example, let U =
{u0, u1, . . .}, and define E as follows: (ui, uj) ∈ E iff either the ith bit of the
binary representation of j or the jth bit of the binary representation of i is 1.

The random graph satisfies the following extension axioms, for each n > 0:

∀x1, . . . , xn
∧

i�=j
xi �= xj →

( ∧

M⊆{1,...,n}
∃z �∈  x

( ∧

i∈M
E(z, xi)∧

∧

j �∈M
¬E(z, xj)

))

In other words, let T be a finite subset of U and S ⊆ T . Then the extension
axioms say that there exists a z �∈ T such that for all x ∈ S, (z, x) ∈ E,
and for all x ∈ T − S, (z, x) �∈ E. It is immediately clear from the extension
axioms that RG has infinite VC dimension; in fact, the family definable by
the formula E(x, y) shatters arbitrarily large finite sets.

Recall that MSO is a restriction of second-order logic in which second-
order variables range over sets. In the active-domain fragment of MSO, they
range over subsets of adom(D).

Theorem 5.8.2. FO(SC ,RG) = MSOact(SC ,RG).

Proof. The idea is to use the extension axioms to model MSO queries.
Consider an MSOact formula

ϕ( x) ≡ QX1⊆adom . . .QXm⊆adom Qy1∈adom . . .Qyn∈adom α(  X,  x,  y),

where the Xis are second-order variables, the yjs are first-order variables, and
α is a Boolean combination of SC - and RG-formulae in variables  x,  y, and
formulae Xi(xj) and Xi(yj). Construct a new FO(SC ,RG) formula ϕ′( x) by
replacing each QXi ⊆ adom with Qzi �∈ adom ∪  x (which is FO-definable),
and changing every atomic subformula Xi(u) to E(zi, u). It is then easy to
see, from the extension axioms, that ϕ′ is equivalent to ϕ.

For the other direction, we proceed by induction on the formulae. The only
nontrivial case is that of unrestricted existential quantification. Suppose we
have an MSOact(SC ,RG) formula ϕ( x, z), with  x = (x1, . . . , xn), of the form
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Q  X⊆adom Q y∈adom α(  X,  x,  y, z),

where α again is a Boolean combination of atomic SC - and RG-formulae, as
well as formulae Xi(u), where u is one of the first-order variables z,  x,  y. We
want to find an MSOact formula equivalent to ∃z ϕ.

Such a formula is a disjunction of ∃z ∈ adom ϕ ∨
∨
i ϕ( x, xi) ∨ ∃z �∈

adom ϕ. The former is an MSOact(SC ,RG) formula. To eliminate z from the
latter, all we have to know about z is its connections to  x and to the active
domain in the random graph; the former is taken care of by a disjunction
listing all subsets of {1, . . . , n}, and the latter by a second-order quantifier
over the active domain. For I ⊆ {1, . . . , n}, let χI( x) be a quantifier-free
formula saying that no xi, xj , with i ∈ I, j �∈ I, could be equal. Introduce a
new second-order variable Z and define an MSOact formula ψ( x) as

∃Z⊆adom
∨

I⊆{1,...,n}

(
χI( x) ∧Q  X⊆adom Q y∈adom αZI (  X,Z,  x,  y)

)
,

where αZI (  X,Z,  x,  y) is obtained from α by:

1. replacing each E(z, xi) by true for i ∈ I and false for i �∈ I,
2. replacing each E(z, yj) by Z(yj), and
3. replacing each Xi(z) by false.

The extension axioms then ensure that ψ is equivalent to ∃z �∈ adom ϕ. �

Thus, RG provides an example of a structure with quantifier elimination
and a decidable first-order theory that does not admit natural-active collapse.
At the same time, one can establish meaningful bounds on the expressiveness
of queries over RG: for example, each generic query in FO(SC ,RG) is in
MSOact(SC ). (This does not immediately follow from the active-generic
collapse, as we do not include any order relation. One can show that the
order is not needed, by modifying the proof of Lemma 5.5.4 using some
special properties of RG.) Thus, every generic query in FO(SC ,RG) can be
evaluated in PSPACE (in fact, even in the polynomial hierarchy).

5.8.2 Complexity Bounds for Generic Queries

We now revisit the structure 〈Σ∗, (fa)a∈Σ ,≺〉 considered in Sect. 5.7.3.
Recall that Σ here is a finite alphabet, Σ∗ is the set of all finite strings over
Σ, fa is a function that adds a at the end of its argument, and ≺ is the prefix
relation. We now extend it to a structure S = 〈Σ∗, (fa)a∈Σ ,≺, el〉, which
adds a binary predicate el, interpreted as follows: el(x, y) iff |x| = |y|, where
| | stands for the length of a finite string.

Despite looking rather arbitrary, this structure arises naturally in the
study of logical properties of formal languages, and has a number of nice
properties. For example, the subsets of Σ∗ definable in S are precisely
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the regular languages. Moreover, in a certain sense, S is the most general
structure whose definable relations are precisely tuples of strings accepted
by finite automata. That is, any other structure on Σ∗ whose definable
relations are tuples accepted by finite automata can be interpreted in S.
The characterization of definable relations via automata also implies the
decidability of the theory of S.

Using the isolation property, we have proved restricted quantifier collapse
for 〈Σ∗, (fa)a∈Σ,≺〉. However, it is impossible to prove the collapse for S
as its definable families may have infinite VC dimension. To see this, let
Σ = {a, b}, and consider a formula ϕ(x, y) saying that there is a prefix of x
that has the same length as y and ends with an a:

∃z∃v
(
z  x ∧ el(z, y) ∧ fa(v) = z

)

For each n, let An = {bi | i ≤ n}, and let A be an arbitrary subset of An. Let
sA be a string of length n whose ith position is a iff bi ∈ A. Then, for each
i ≤ n, ϕ(sA, bi) holds iff bi ∈ A. This shows that arbitrarily large finite sets
can be shattered by families definable in S.

This still leaves open the possibility of proving natural-generic collapse
for S; however, we do not know if it holds in S. Nevertheless, we can prove
reasonably good bounds for FO(SC ,S). For this, we need the complexity
class AC0/poly used in Theorem 5.8.1. As this class is a very modest
extension of FOact(SC , <), some good bounds can be derived.

Proposition 5.8.3. Every generic query in FO(SC ,S) can be evaluated in
AC0/poly. In particular, queries such as parity and connectivity are not
expressible in FO(SC ,S).

Proof sketch. First, we explain the complexity model used here, which is
applicable to the evaluation of generic queries. Given an SC -structure D
with |adom(D)| = n, we code elements of the active domain by the numbers
0, . . . , n − 1 represented in binary, and then code tuples and relations in a
standard fashion, using special delimiter characters. Using this coding, we
show that every generic sentence Φ can be evaluated in AC0/poly. This is
done in three steps:

1. First, we show that it suffices to restrict quantification to strings of length
at most mD, where mD = max{|x| | x ∈ adom(D)}. This is proved by
an Ehrenfeucht–Fräıssé game argument. More precisely, one shows the
following. Let Σ≤m = {x ∈ Σ∗ | |x| ≤ m}. Then, for each SC , there is a
fixed constant lSC such that if the duplicator can win in k+ lSC rounds on
the restrictions of (S, D1) and (S, D2) to (Σ≤mD1 , D1) and (Σ≤mD1 , D2),
then the duplicator can win in k rounds on (S, D1) and (S, D2).

2. Second, we define an ordering < on Σ∗: x < y if either |x| < |y|, or |x| = |y|
and x is lexicographically less than y. Viewing Σ∗ as an infinite tree, this
amounts to traversing it, level by level, from left to right. Now, by generic-
ity, we may assume that adom(D) is an initial segment of this ordering <.
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3. Finally, we define an advice function f that, for each n, codes all the
relations of S on the first n′ elements of Σ∗ in the order <. Here n′ is the
number of all strings of length at most m, where m is the length of the nth
string in the <-order. For a given SC -structure D with |adom(D)| = n,
f codes all the relations of S on Σ≤mD . Assuming that adom(D) is an
initial segment of <, we conclude that the size of f(n) is polynomial in n.
By step 1, we know that quantification over Σ≤mD suffices. As f(n)
provides all the information about S on Σ≤mD , we conclude that
with f , a generic query can be expressed in FO, and thus it belongs
to AC0/poly. �

5.9 Expressiveness of Constraint Query Languages

In this section, we return to constraint databases and study the expressive
power of standard query languages such as FO + Lin and FO + Poly. We
shall deal mostly with the fundamental topological property of connectivity,
which is also important in many applications of constraint databases as
spatial databases. That is, we deal with the following problem:

Problem: CONNECTIVITY

Input: an M-definable set S ⊆ Rk.
Output: true if S is topologically connected, and false otherwise.

The question is whether CONNECTIVITY is definable in FO(SC ,M),
where SC consists of just S. We shall deal mostly with the cases where M
is the real field or the real ordered group (and thus S is semialgebraic or
semilinear); then, by definability, we mean definability in FO + Poly and
FO + Lin. We remarked in Section 5.3 that the problem looks akin to the
problem of finite graph connectivity, simply because any finite graph can be
embedded into R3 without self-intersections, and the result of the embedding
is topologically connected iff the original graph is connected. At that point, we
did not know whether FO + Poly and FO + Lin define graph connectivity.
Now we know that they do not. However, we shall choose a different and
less ad hoc way to proceed, as the results we present here give us more than
nondefinability of connectivity, and can be used for dimensions 1 and 2 as well.

In the next section, we shall see a reduction from topological connectivity
to a definability problem for embedded finite models. In Sect. 5.9.2 we present
a different technique, based on the topological structure of definable sets. In
Sect. 5.9.3, we study queries that separate FO + Poly from FO + Lin.

5.9.1 Reductions to the Finite Case

Recall that MAJORITY is the following problem: “given two finite sets A
and B, is card(A) > card(B)?” We now prove the following.
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Proposition 5.9.1. Assume that FO + Poly can define CONNECTIVITY

when the input is restricted to semilinear sets. Then FO + Poly can define
MAJORITY.

Proof. Suppose we are given two finite sets A and B. Assume, without loss
of generality, that a, b > 0 for all a ∈ A and b ∈ B (if not, add maxa∈A |a|+ 1
to all elements of A, and likewise for B; this can be defined in FO + Lin).
Let A = {a1, . . . , an} and B = {b1, . . . , bm}, where a1 < . . . < an and
b1 < . . . < bm. This is shown in Fig. 5.6 for n = 6 and m = 4.

Let C = B ∪ {0}. Assume that C = {c1, . . . , cm+1}, where c1 = 0, and
ci = bi−1 for 1 < i ≤ m + 1. For each 1 ≤ i < n and 1 ≤ j < m + 1, define
a semilinear set Xij in R2 as the union of the following five sets:

X1
ij = {(x, y) | y = ai, cj ≤ x ≤ (2cj + cj+1)/3}

X2
ij = {(x, y) | x = (2cj + cj+1)/3, ai ≤ y ≤ (ai + ai+1)/2}

X3
ij = {(x, y) | y = (ai + ai+1)/2, (2cj + cj+1)/3 ≤ x ≤ (cj + 2cj+1)/3}

X4
ij = {(x, y) | x = (cj + 2cj+1)/3, (ai + ai+1)/2 ≤ y ≤ ai+1}

X5
ij = {(x, y) | y = ai+1, (cj + 2cj+1)/3 ≤ x ≤ cj+1}.

This is shown in the right picture in Fig. 5.6: the five sets correspond to the
five segments of the thick line. We then define a set X as

{(x, 0) | a1 ≤ x ≤ an} ∪ {(x, an) | a1 ≤ x ≤ an} ∪
n−1⋃

i=1

m⋃

j=1

Xij .

This set is shown in the left picture in Fig. 5.6 (in fact, we show the
lines as straight, but it should be kept in mind that in every rectangle
[cj , cj+1]× [ai, ai+1] they are given by Xij).

We next observe that X is definable in FO + Lin from A and B. Indeed,
C is definable, and then every Xij is definable, as follows from its definition.
(The main reason for going from (cj , ai) to (cj+1, ai+1) by “steps” rather
than a straight line was to achieve definability in FO + Lin.) Secondly,
card(B) ≥ card(A) iff the set X is connected – this is because the “line”
from (0, 0) reaches the ceiling iff card(B) ≥ card(A). Thus, X is connected
iff MAJORITY is false on A and B, which completes the proof. �

b1 b2 b3 b4

a1

a2

a3

a4

a5

a6

cj
ai

cj+1

ai+1

Fig. 5.6. Illustration of the proof of Proposition 5.9.1
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We immediately derive the following corollary from this result and the
fact that FO + Lin suffices to construct X from A and B:

Corollary 5.9.2. Neither FO + Lin nor FO + Poly can define CONNEC-

TIVITY. Furthermore, CONNECTIVITY is not definable in FO({S},M)
if M is an o-minimal expansion of the real field R.

The reduction technique is not limited to the CONNECTIVITY prob-
lem. We invite the reader to draw simple pictures that give similar reductions
for problems such as homeomorphism of two 2-dimensional sets, the existence
of exactly one (or at most one, or at least one) hole, or being simply connected.

5.9.2 Topological Properties

In this section, we give a different proof that topological connectivity is
not definable in FO + Poly. The proof relies on topological properties of
semialgebraic sets, and on a criterion for indistinguishability of two sets in
R2 by certain FO + Poly queries.

Note that connectivity is a query about topological properties of its
input. Formally, a Boolean query Q on sets in Rk is called topological if it
is invariant under homeomorphisms: for any homeomorphism h : Rk → Rk

and any S ⊆ Rk, Q(S) is true iff Q(h(S)) is true. Some examples of
topological queries are connectivity, having exactly one hole, and having
exactly k connected components. Some examples of nontopological queries
are properties such as “being a line”, “containing the origin” etc.

It turns out that the expressive power of FO + Poly with respect to
topological queries on R2 can be nicely characterized. The characterization is
based on the fact that every semialgebraic set S is locally conic around any
point. This is illustrated in Fig. 5.7: there is a small neighborhood of a point
 x such that the intersection of this neighborhood with the set S is isotopic
to the cone with center at  x and the base that is the intersection of S with
the boundary of the neighborhood.

More precisely, let Bε( x) be { y ∈ R2 | ‖  y −  x ‖≤ ε} and let
B◦
ε ( x) = { y ∈ R2 | ‖  y −  x ‖= ε}. Then, for each semialgebraic set S and

 x ∈ R2, there is ε > 0 such that S∩Bε( x) is isotopic to the cone with the center
at  x and the base B◦

ε ( x)∩S. Furthermore, for any ε′ < ε, Bε′( x)∩S is isotopic
to the same cone, so we can talk about the topological type of a cone of S
around  x. We shall use tpS( x) to denote the topological type of such a cone.

Fig. 5.7. Cones
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.

Fig. 5.8. Four cone types

There are four cone types that are of special interest: the full cone, the
half-cone, the line, and the empty cone, shown in Figure 5.8. The first is the
cone type of a point in the interior of a set S. The second is the cone type of
a point on the boundary of a two-dimensional region. The third is the type of
a point in a one-dimensional segment of S. And the last one is the type of a
point outside S, or of an isolated point of S. It turns out that for any closed
semialgebraic set S ⊆ R2, these are the only cone types that can be realized by
infinitely many points – all other cone types have only finitely many realizers.

We write S ∼tp S′ if, for every topological type T of a cone,

card({x ∈ S | tpS(x) = T }) = card({x ∈ S′ | tpS′(x) = T }).

Note that this condition is somewhat reminiscent of that for Hanf-locality,
which says that each local neighborhood must have equally many realizers in
two structures.

Cone types characterize the expressive power of FO + Poly with respect
to topological queries as follows.

Theorem 5.9.3. Let Q be a topological FO + Poly query over a schema with
one binary relation, and let S ∼tp S′, where S, S′ are closed semialgebraic
sets in R2. Then Q(S) is true iff Q(S′) is true.

The proof of this result is rather involved. The main idea is as follows. It is
possible to define a set of elementary transformations on closed semialgebraic
subsets of R2 such that these transformations preserve elementary equivalence
with respect to topological FO + Poly sentences, and such that every two sets
satisfying S ∼tp S′ can be transformed to the same subset of R2.

Another Proof That Connectivity Is Not in FO + Poly

Suppose that connectivity is tested by a (topological) FO + Poly query Q.
Consider S1 and S2, shown in Fig. 5.9: S1 is a disk, and S2 is a disjoint union
of two disks. Both S1 and S2 realize the same cone types (the full, the half,
and the empty cones), and both have infinitely many realizers for each of
these types. Thus, S1 ∼tp S2, and by Theorem 5.9.3 we must have Q(S1) iff
Q(S2). Thus, Q cannot define connectivity, as S1 is connected and S2 is not.

It is natural to ask whether Theorem 5.9.3 can be extended to schemas
with two or more relation symbols; in particular, to topological queries over
multiple regions on the plane. It turns out that the answer is negative.
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S1 S2

Fig. 5.9. Proving that connectivity is not in FO + Poly

Suppose that we have two relation symbols, S and T , and assume that S
is interpreted as an area shown in light gray, and T as an area shown in dark
gray. Fig. 5.10 gives two instances of (S, T ): in instance I1, on the left, T lies
inside S, and in instance I2, on the right, S lies inside T .

We can see that I1 ∼tp I2, as both instances realize the same cone types. At
the same time, I1 and I2 can be separated by a topological FO + Poly query.
The latter statement is by no means trivial. An obvious way to separate I1

from I2 would be to say: “traversing any line from −∞ to +∞, we first enter S
and then T ”. However, it is easy to show that this property, while expressible
in FO + Poly, is not topological. Nevertheless, a rather complicated construc-
tion yields a topological FO + Poly query that separates I1 from I2.

5.9.3 Linear vs. Polynomial Constraints

All expressivity bounds proved so far, in the finite and infinite contexts,
apply to both FO + Lin and FO + Poly. In this section we show a few
queries that separate the two. As R and Rlin share many model-theoretic
properties, in particular most of the properties that were crucial for proving
collapse results, new techniques are needed to separate them.

Most separation results are based on the simple observation that mul-
tiplication is not definable in Rlin (indeed, by quantifier elimination, every
Rlin-definable function is piecewise linear). To show that an FO + Poly

query Q is not expressible in FO + Lin, we then prove that adding Q to
FO + Lin would enable us to define multiplication.

We start with two examples, which can be stated for either finite or
semilinear sets. For both queries, the input is a set S ⊆ R2. The queries are:

Fig. 5.10. Topological equivalence for multiple regions
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• conv(S), which returns the convex hull of S, and
• collinear(S), which returns the set of triples s1, s2, s3 ∈ S (that is, a

subset of R6) which are collinear.

We have already seen that conv(·) is an FO + Poly query. collinear(·) is
expressible in FO + Poly as well, as FO + Poly can test whether any three
given points (x1, y1), (x2, y2), (x3, y3), are collinear.

Proposition 5.9.4. Neither conv nor collinear is expressible in FO + Lin,
even if its argument is a finite set.

Proof sketch. The main idea is illustrated in Figure 5.11. Assume that
collinear is definable in FO + Lin. Suppose we are given four distinct points
u, v, w, s in R2. Then, in FO + Lin, we can test whether the lines l(u, v) and
l(w, s), passing through u, v and w, s respectively, are parallel. Indeed, such
lines are not parallel iff there is a point p such that both collinear(u, v, p) and
collinear(w, s, p) hold (Fig. 5.11 (b)).

However, testing whether two lines are parallel is sufficient to define
multiplication, as shown in Fig. 5.11 (a). If the lines passing through (0, 1)
and (x, 0), and through (0, y) and (z, 0) are parallel, then z = x · y. Thus,
collinear is not an FO + Lin query.

Finally, conv is not expressible, since three distinct points are collinear iff
one of them is in the convex hull of two others. �

Note that the query convex(S), testing whether an n-dimensional
semilinear set S ⊆ Rn is convex, can be defined in FO + Lin, as S is
convex iff for every two points (x1, . . . , xn), (y1, . . . , yn) ∈ S, the point
(1
2 (x1 + y1), . . . , 1

2 (xn + yn)) is in S. Another positive expressibility result is
obtained for testing whether a semilinear set S ⊆ R2 is a line, since S is a
line if either it is a vertical line or it is the graph of a function, and for any
 x,  y,  z ∈ S,  x + ( y −  z) ∈ S. All these conditions are FO + Lin-expressible.

(a) (b)
x z

y

1

u

v

w
s

p

Fig. 5.11. Inexpressibility of conv and collinear in FO + Lin
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We now consider one more example: the query ExistsLine(S) is true iff
the set S ⊆ R2 contains the graph of a line, i.e. {(x, y) | ax + b = y} for some
a, b ∈ R. Along the same lines as the proof of Proposition 5.9.4, we can show
that ExistsLine is not definable in FO + Lin. Let u,w ≥ 0 and v > 1, and
consider the set Su,v,w ⊆ R2 defined as follows:

Su,v,w =

⎧
⎪⎪⎨

⎪⎪⎩

(x, y)

∣
∣
∣
∣
∣
∣
∣
∣

x ≤ 0, y ≤ 0
or 0 ≤ x ≤ 1, 0 ≤ y ≤ v
or 1 ≤ x ≤ u, v ≤ y
or u ≤ x,w ≤ y.

⎫
⎪⎪⎬

⎪⎪⎭

.

This set is shown in Fig. 5.12. It is easy to see that ExistsLine(Su,v,w) is
true iff w ≤ u · v; thus, in FO + Lin + ExistsLine one can define, for example,
the set {(x, y) | y = x2, x > 1}, which is clearly not FO + Lin-definable.
Hence, ExistsLine is not an FO + Lin query.

However, not all results separating FO + Lin and FO + Poly are so
simple. Consider the following FO + Poly query ψ(x1, x2, y1, y2):

∀λ
(

(0 ≤ λ ≤ 1) → S(λ · x1 + (1− λ) · x2, λ · y1 + (1− λ) · y2)
)
,

which says that the segment between (x1, y1) and (x2, y2) is contained in S ⊆
R2. By the same method as the one we used for ExistsLine, one can show that
this is not an FO + Lin query. But now consider a slight modification of this
query: suppose we want to know whether the segment connecting two points
on the boundary of a set S lies entirely in S. It turns out that this query is
inexpressible in FO + Lin; the proof of this fact, however, is far from obvious.

5.10 Query Safety

In the previous sections, we worked with two different kinds of objects: arbi-
trary FO(SC ,M) formulae (for which we proved results such as natural-active
collapse) and queries definable in FO(SC ,M) (for which we proved results

1

v

u

u*v

1

v

u

u*v

w

w

Fig. 5.12. Proving that “contains a line” is not in FO + Lin
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such as the active-generic collapse). Queries, unlike arbitrary formulae, are
required to have certain closure properties: they return finite outputs on
embedded finite models.

This notion of closure is well known in classical relational database theory
under the name of safety: one is often interested in looking at only those
formulae in FOact(SC ) that return finite results. For example, assuming
an infinite domain U and one relation S, the formula ¬S(x) produces the
infinite set U − adom(D). It is known that for FOact(SC ), one can identify
a recursive subset of safe formulae; that is, the set of formulae that always
return finite results on finite SC -structures, and such that every formula
with this property is equivalent to one from this set.

In this section we consider the problem of safety in the context of embed-
ded finite models and constraint databases. For the former, we encounter a
familiar situation, where the behavior of formulae depends greatly on the
properties of the underlying structures. For some structures, most notably
Rlin and R (linear and polynomial constraints), we can give a nice syntactic
characterization. The safety problem also arises in the context of constraint
databases. Although the flavor is quite different, we shall show that it reduces
to the finite safety problem.

5.10.1 Finite and Infinite Query Safety

Recall that the output of an FO(SC ,M) formula ϕ(x1, . . . , xn) on a finite
SC -structure D is ϕ(D) def= { a ∈ Un | D |= ϕ( a)}.

Definition 5.10.1. An FO(SC ,M) formula ϕ( x) is safe on a finite SC-
structure D if ϕ(D) is finite. A formula is safe if it is safe on every finite
structure.

We now define the following problems:

Problem: SAFETY

Input: an FO(SC ,M) formula ϕ( x).
Output: true if ϕ is safe, and false otherwise.
Problem: STATE-SAFETY

Input: an FO(SC ,M) formula ϕ( x) and a finite SC -structure D.
Output: true if ϕ is safe on D, and false otherwise.

It is known that in general the SAFETY problem is undecidable even for
M = 〈U, ∅〉 and ϕ an FOact(SC ) formula. On the other hand, one can easily
show the following.

Proposition 5.10.2. Let M = 〈U, ∅〉. Then the STATE-SAFETY problem
is decidable.

Proof sketch. By Theorem 5.6.3, we can assume that ϕ is an FOact(SC )
formula. Then it is safe on D iff every tuple in the output contains only
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elements of adom(D) (by genericity, if at least one tuple contains some
element c �∈ adom(D), then any other c′ �∈ adom(D) can be substituted
for c). This condition can easily be tested by considering a set c1, . . . , cm of
distinct elements not in adom(D), where m is the number of free variables in
ϕ, and checking all tuples in adom(D) ∪ {c1, . . . , cm}. �

We now turn to the safety problem for constraint databases. Consider
a situation where we have a linear constraint database D, but we want to
write queries against D in FO + Poly. The main reasons for considering this
situation are the following. Linear constraints are used to represent spatial
data in many applications, and they have several advantages over polynomial
constraints: the quantifier elimination procedure is less costly, and numerous
algorithms have been developed to deal with figures represented by linear
constraints. As FO + Lin is more limited than FO + Poly (for example, it
cannot define the convex hull of a set), one may want to use FO + Poly to
get extra expressive power.

However, as soon as the class of constraints used in queries is more general
than the class used to define constraint database instances, we encounter
the safety problem again: the output of an FO + Poly query may fail to
be semilinear. More generally, if constraint databases are required to have
certain geometric properties, then the safety problem is the problem of
whether those geometric properties are preserved by a given query language.
Sect. 5.10.4 deals with this problem.

5.10.2 Safe Translations

The main goal of this section is to show that the safety of formulae is greatly
affected by the properties of the underlying structure M. To state these
results formally, we use the following concept.

Definition 5.10.3. We say that there is a safe translation of FOact(SC ,M)
formulae if there is a function ϕ → ϕsafe on FOact(SC ,M) formulae such
that for every ϕ,

1. ϕsafe is safe, and
2. if ϕ is safe for D, then ϕ(D) = ϕsafe(D).

A translation is canonical if ϕsafe(D) = ∅ whenever ϕ is not safe on D. A
translation is recursive if the function ϕ→ ϕsafe is recursive.

It turns out that recursive safe translations need not exist even for
structures with decidable theories.

Proposition 5.10.4. There exists a structure M that is recursive and
has a decidable first-order theory, and for which there is no recursive safe
translation of FOact(SC ,M) formulae.
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Proof sketch. Consider a structure M whose domain U is the disjoint union of

• the set of Turing machines, appropriately coded as strings;
• the set of input strings to a Turing machine;
• the set of traces, i.e. full descriptions of a partial run of a Turing machine

on an input word.

The signature of M consists of one ternary relation P , which holds for
a triple (M,w, t) iff t is a trace for a Turing machine M on an input word
w. The key point is that there is no structure or ordering on the traces
themselves: hence one cannot determine in first-order logic whether or not
a trace is maximal. In fact, using a quantifier elimination argument, one can
show that the first-order theory of M is decidable.

Let SC contain a single unary relation S. For any Turing machine M , let
ϕM (t) be the query ∃!w ∈ adom(w = w) ∧ ∃w ∈ adomP (M,w, t). That is, if
S = {w}, then ϕM checks whether t is a trace of M on w.

Assume that there is a recursive safe translation, and consider ϕMsafe(t).
Assuming further that we can check the equivalence of ϕMsafe and ϕM , we
would be able to enumerate all machines that halt on every input, which is
clearly impossible.

Thus, to obtain a contradiction, we need to show how to verify the
equivalence of ϕMsafe and ϕM . For that, we simply turn them into FO(M)
formulae ψM (w, t) and ψMsafe(w, t) by replacing each subformula of the form
S(z) by w = z. The resulting FO(M) formulae are then true for (w, t)
iff t is in the output of the corresponding query on input {w}. Thus,
∀w∀t (ψM (w, t) ↔ ψMsafe(w, t)) holds iff ϕMsafe and ϕM are equivalent. The
result now follows from the decidability of the theory of M. �

If one drops the condition that the theory of M be decidable, but insists
on computable functions and predicates in Ω, the situation is even worse:
there need not be any safe translations at all (recursive or not).

Proposition 5.10.5. There is a structure M = 〈N, P 〉, where P is a
computable predicate, such that there is no safe translation of FOact(SC ,M)
formulae.

Proof. Let P be a ternary predicate defined as follows: P (i, j, k) iff the ith
Turing machine on the input j makes at least k moves (assuming some
standard encoding of machines and inputs). Consider a schema that consists
of a single binary relation S. Assume, contrary to the proposition, that there
is a safe translation over M. Let ϕ(k) ≡ ∃i, j ∈ adom S(i, j) ∧ P (i, j, k), and
let ψ(k) be ϕsafe. Note that ψ is an active-domain formula in the language of
S and P . We now show how to use ψ to decide the halting problem.

Suppose we are given the ith machine Mi and the input j. We assume with-
out loss of generality that Mi makes at least one move on j. Define a database
D in which S consists of a single tuple (i, j). Since we know that ψ is safe, we
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then compute the minimum number l such that D �|= ψ(l). It is computable
since (a) it exists, and (b) for each k, it is decidable whether D |= ψ(k).

Assume that D |= ϕ(l). Then Mi does not halt on j. Indeed, if Mi halts,
then ϕ(D) is finite, and hence ϕ(D) = ψ(D), but we have l ∈ ϕ(D) − ψ(D).
Assume that D �|= ϕ(l). Then Mi makes k < l moves on j, and thus halts.
Hence, D |= ϕ(l) iff Mi halts on j. Since it is decidable whether D |= ϕ(l),
we obtain a contradiction. �

On the other hand, for some structures M, recursive safe translations can
be obtained.

Proposition 5.10.6. Let M be o-minimal, be based on a dense order, admit
effective quantifier elimination, and have a decidable theory (for example, M
can be Rlin or R). Then there exists a recursive canonical safe translation of
FOact(SC ,M) formulae.

Proof sketch. Given an FOact(SC ,M) formula ϕ, let α(x) be a formula
defining the active domain of the output of ϕ. Let Ψ be an FOact(SC ,M)
sentence equivalent to

¬∃x1, x2 ((x1 < x2) ∧ (∀x x1 < x < x2 → α(x)))

(which exists, by natural-active collapse). Define ϕsafe as ϕ∧ Ψ . The proposi-
tion then follows from the following easy claim: D |= Ψ iff ϕ(D) is finite. �

Corollary 5.10.7. Let M be as in Proposition 5.10.6. Then the STATE-
SAFETY problem over M is decidable.

Thus, to obtain a nice syntactic characterization of safe queries, we must
deal with structures that have good properties (just as in the case of collapse
results).

5.10.3 Finite Query Safety: Characterization

To give an idea of the characterization of safety that we are about to
provide, let us modify slightly an example that we used in Section 5.2:
ϕ(x) ≡ (x > 1) ∧ ∃y S(y) ∧ (x · x = y). Assuming that the underlying struc-
ture is the real field R, the output of this formula is contained in the output
of ∃y S(y) ∧ (x · x = y), which is {−

√
a,
√
a | a ∈ S}. Thus, there is an upper

bound on the output of ϕ, which is given by applying certain functions to the
active domain. This is the central idea of the range-restriction we are about to
define. But first we introduce the notion of an effective syntax for safe queries.

Definition 5.10.8. We say that a class Q of queries captures the class
of safe queries in FO(SC ,M) if every query in Q is safe and definable in
FO(SC ,M), and every safe FO(SC ,M) query is equivalent to a query in Q.

If there exists a recursively enumerable class Q of queries that captures
safe queries in FO(SC ,M), we say that the class of safe FO(SC ,M) queries
has an effective syntax.
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Proposition 5.10.4 (more precisely, the construction presented in the proof
of Proposition 5.10.4) implies that there are structures M with a decidable
first-order theory but without an effective syntax for safe FO(SC ,M).
Proposition 5.10.6, on the other hand, shows that there is an effective syntax
for FO + Lin and FO + Poly queries, as one can express, in those languages,
the question whether the output of a query is finite. This way of guaranteeing
effective syntax is quite inelegant, and tells us nothing about the structure
of safe queries. Below, we present a much better description, based on the
notion of definable functions.

Definition 5.10.9. Given M = 〈U,Ω〉, a function f : Uk → U is M-
definable (or just definable if M is understood) if its graph {(a1, . . . , ak, a) ∈
Uk+1 | a = f(a1, . . . , ak)} is an M-definable set.

From now on, we assume that adom(D) �= ∅. The case of empty SC -
structures can be dealt with easily, as in this case an FO(SC ,M) formula
reduces to a fixed FO(M) formula, whose finiteness can be tested in the
o-minimal case.

Definition 5.10.10. Given M = 〈U,Ω〉, a query in range-restricted form is
a pair Q = (F, ϕ(x1, . . . , xn)), where ϕ( x) is an FO(SC ,M) formula, and F
is a finite collection of definable functions.

The semantics is defined as follows. First, for a set X, let

F (X) = {f( a) | f ∈ F,  a ∈ Xarity(f) }.

Then, for any finite SC-structure D, define

Q(D) = ϕ(D) ∩ (F (adom(D)))n.

That is, the finite set F (adom(D)) provides an upper bound on the
output of Q (every constant in Q(D) must be contained in F (adom(D))),
and then ϕ is evaluated within this set. Since F is finite, and every function
in F is definable, we obtain the following.

Lemma 5.10.11. Every query in range-restricted form over M is safe and
definable in FO(SC ,M).

We now can state the main result of this section.

Theorem 5.10.12. Let M be any o-minimal structure based on a dense
linear order. Assume that there is at least one definable constant in M. Then
there is a function Make Safe that takes as input an FO(SC ,M) formula
ϕ( x), and outputs a finite set F of definable functions such that the query
Q = (F, ϕ) is equivalent to ϕ on any finite SC-structure D on which ϕ is
safe. Furthermore, if M is decidable and has effective quantifier elimination,
then Make Safe is recursive.



5.10 Query Safety 313

The proof of this theorem will be given later in this section. But first we
shall state some corollaries.

Corollary 5.10.13 (Range-Restricted = Safe). Let M be as in Theorem
5.10.12. Then the class of range-restricted queries captures the class of safe
FO(M,SC ) queries.

We now consider specifically the cases of polynomial and linear constraints.

Definition 5.10.14. (a) A query in the linear range-restricted form is a pair
Q = (F, ϕ), where ϕ is an FO + Lin formula and F is a finite collection of
linear functions (that is, functions of the form 〈 a,  x〉 + b). The semantics is
defined in the same way as for range-restricted queries above.

(b) A query in the polynomial range-restricted form is a pair
Q = (P, ϕ(x1, . . . , xn)), where ϕ is an FO + Poly formula and P is a
finite collection of multivariate polynomials with a distinguished variable z.
The semantics is defined as follows. For a set X, and p(z,  y), let p(X) be
the set of all roots of polynomials of the form p(z, a), where  a is a tuple
over X, provided such a univariate polynomial is not identically zero. Let
P (X) =

⋃
p∈P p(X). Then Q(D) is defined as ϕ(D) ∩ (P (adom(D)))n.

Corollary 5.10.15. (a) The class of queries in the linear range-restricted
form captures the class of safe FO + Lin queries.

(b) The class of queries in the polynomial range-restricted form captures
the class of safe FO + Poly queries.

Proof. (a) A function definable over Rlin is piecewise linear. Thus it suffices
to apply Theorem 5.10.12, and take all the linear functions of which functions
in F are composed.

(b) Similarly, we apply Theorem 5.10.12 and obtain a set F of semialge-
braic functions. Each semialgebraic function f( y) is known to be algebraic.
That is, there exists a polynomial p(z,  y) such that p(z,  y) = 0 iff z = f( y).
The result follows from this. �

Algebraic Formulae and the Proof of Theorem 5.10.12

We shall first give an analog of range-restriction using certain FO(M)
formulae, and then show how to derive a set F of definable functions from
such a characterization. The FO(M) that formulae we shall use are algebraic
formulae. They have distinguished parameters, which we shall always denote
by  y and separate from the single other variable by a semicolon. Assume that
 y is of length m. An FO(M) formula γ(x;  y) is called algebraic if, for each  b

in Um, there are only finitely many a ∈ U that satisfy γ(a, b). For example,
the formula γ(x; y) ≡ (x2 = y) is algebraic over R.

From the Uniform Bounds Theorem (Theorem 5.6.7), we obtain the
following useful fact about algebraic formulae.
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Lemma 5.10.16. Let M be o-minimal, and γ(x;  y) algebraic. Then there
exists a number K such that for any  b ∈ Um, the set {a ∈ U | M |= γ( a; b)}
has fewer than K elements.

We now need a syntactic characterization of algebraic formulae over
o-minimal structures. Let Ξ = {ξ1(x;  y), . . . , ξk(x;  y)} be a collection of
formulae. Let

sameΞ(x, x′;  y) ≡
k∧

i=1

(ξi(x;  y) ↔ ξi(x′;  y)).

Now define

βΞ(x;  y) ≡ ∀x′, x′′ (x′ < x < x′′ → (∃z x′ ≤ z ≤ x′′ ∧ ¬sameΞ(x, z;  y))
)
.

Proposition 5.10.17. Let M be an o-minimal structure based on a dense
order. Then a formula γ(x;  y) is algebraic iff there exists a collection of
FO(M) formulae Ξ such that γ is equivalent to βΞ .

Proof. Let Ξ be a collection of formulae, and assume that βΞ is not algebraic.
That is, for some  b over U , βΞ(M; b) = {a | M |= βΞ(a; b)} is infinite. Since
M is o-minimal, βΞ(M; b) is a finite union of points and intervals. Since < is
dense, this means that there exist a0 < b0 ∈ U such that [a0, b0] ⊆ βΞ(M; b).
We now consider the formulae ξ′i(x) = ξi(x; b) for all ξi ∈ Ξ. Since both
ξ′i(M) = ξi(M; b) and ¬ξ′i(M) = ¬ξi(M; b) are finite unions of intervals and
< is dense, for every nondegenerate interval J , it is the case that either
J ∩ ξ′i(M) or J ∩ ¬ξ′i(M) contains an infinite (closed) interval. Using this
fact, we construct a sequence of intervals as follows: I0 = [a0, b0], and I1 ⊆ I0
is an interval that is contained either in I0 ∩ ξ′1(M) or in I0 ∩¬ξ′1(M). At the
jth step, Ij ⊆ Ij−1 is an interval that is contained either in Ij−1 ∩ ξ′j(M) or
in Ij−1 ∩ ¬ξ′j(M). Let I = Ik. Then, for any c, d ∈ I, M |= ξi(c, b) ↔ ξi(d; b).

Since I = [a′, b′] ⊆ [a0, b0] and M |= βΞ(c; b) for all c ∈ I, we obtain that,
for every c ∈ (a′, b′), there exists a d ∈ [a′, b′] such that M |= ¬sameΞ(c, d; b).
That is, for some ξi ∈ Ξ, M |= ¬(ξi(c; b) ↔ ξi(d; b)), which is impossible by
the construction of I. This proves that βΞ is algebraic.

For the converse, for any γ(x;  y), we let Ξ consist of just γ. That is,
βΞ(x;  y) is

∀x′, x′′ (x′ < x < x′′ → (∃z x′ ≤ z ≤ x′′ ∧ ¬(γ(x;  y) ↔ γ(z;  y)))
)
.

We claim that γ and βΞ are equivalent, if γ is algebraic. Fix any  b of the same
length as  y, and assume that γ(a; b) holds. If βΞ(a; b) does not hold, then
there exist a′ < a < a′′ such that for every c ∈ [a′, a′′], γ(c; b) ↔ γ(a; b) holds;
thus, γ(c; b) holds for infinitely many c, contradicting the algebraicity of γ.
Hence βΞ(a; b) holds. Conversely, assume that βΞ(a; b) holds. If γ(a; b) does
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not hold, then there is an interval containing a on which γ(·; b) does not hold.
Indeed, ¬γ(M; b) is a finite union of intervals, whose complement is a finite set
of points, so the above observation follows from the density of the ordering.
We now pick a′ < a′′ such that γ(·; b) does not hold on [a′, a′′]. Since βΞ(a; b)
holds, we find c ∈ [a′, a′′] such that ¬(γ(a; b) ↔ γ(c; b)) holds; that is, γ(c; b)
holds for c ∈ [a′, a′′], which is impossible. Thus, we conclude that γ(a; b) holds,
proving that for any  b, ∀x (γ(x; b) ↔ βΞ(x; b)). This finishes the proof. �

Given an algebraic formula γ(x;  y) and a set X ⊆ U , let γ(X) be the set
of all a that make γ(a; b) true, as  b ranges over tuples of elements of X . Note
that if X is finite, then so is γ(X).

We now define a query in the algebraic range-restricted form as a
pair Q = (γ(x;  y), ϕ(x1, . . . , xn)), where ϕ is an FO(SC ,M) formula,
and γ is an algebraic FO(M) formula. The semantics is defined as
Q(D) = ϕ(D) ∩ (γ(adom(D)))n. Clearly, Q is safe.

Proposition 5.10.18. Let M be any o-minimal structure based on a dense
linear order. Then there is a function Make Safe′ that takes as input an
FO(SC ,M) formula ϕ(x1, . . . , xn), and outputs an algebraic formula γ(x;  y)
such that the query Q = (γ, ϕ) is equivalent to ϕ on all structures D for
which ϕ is safe. Furthermore, if M has effective quantifier elimination, then
Make Safe′ is recursive.

Proof. Let ψ(z) be a one-variable FO(SC ,M) formula that defines the active
domain of the output of ϕ. That is, it is the disjunction of all formulae
∃ x(i)ϕ(z,  x(i)) where  x(i) is  x except for the ith component, and (z,  x(i)) is the
tuple in which z is inserted in the ith position. Note that ϕ is safe on D iff ψ is.

Let M′ be a definable expansion of M that has quantifier elimination,
and hence admits natural-active collapse. We can thus assume that ψ is an
FOact(SC ,M′) formula. Let

ψ(z) ≡ Qw1∈adom . . .Qwl∈adom α(z,  w),

where α(z,  w) is quantifier-free, and all atomic subformulae R(· · · ) contain
only variables, excluding z. Let Ξ = {ξi(z,  w) | i = 1, . . . , k} be the collection
of all FO(M′) atomic subformulae of α. We may assume without loss of
generality that the length of  w is nonzero, and that Ξ is nonempty (just as
we did in the proof of natural-active collapse).

We define sameΞ(a, b,  w), as before, to be
∧k
i=1(ξi(a,  w) ↔ ξi(b,  w)), and

define γ(x;  w) to be βΞ(x;  w). We let Make Safe(ψ) output γ. Note that γ is
actually an FO(M) formula, since M′ is a definable expansion.

Since γ is algebraic by Proposition 5.10.17, we must show that
{a | D |= ψ(a)} = {a ∈ γ(D) | D |= ψ(a)} for every nonempty database for
which ψ is safe.

Assume otherwise; that is, for some nonempty D for which ψ is safe, we
have D |= ψ(a) but a �∈ γ(D). Let  c1, . . . , cM be an enumeration of all tuples
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of of elements of adom(D) of the same length as  w. Note that M > 0. Since
a �∈ γ(D), we have that for each i = 1, . . . ,M , there exist a′i, a

′′
i such that

a′i < a < a′′i and M |= sameΞ(a, c, ci) for all c ∈ [a′i, a
′′
i ].

Let b′ = max{a′i} and b′′ = min{a′′i }. We have b′ < a < b′′, and for each  c
(of length the same as  w) over the active domain, we have ξi(a; c) ↔ ξi(c, c)
for every c ∈ [b′, b′′]. From this, by a simple induction on the structure of the
formula (using the fact that z does not appear in any atomic formula R(· · · )),
we obtain that D |= α(a, c) ↔ α(c, c) for every  c over adom(D) and every c ∈
[b′, b′′], and thus D |= ψ(a) ↔ ψ(c), which implies that ψ is not safe for D. This
contradiction proves the correctness of Make Safe′, and the proposition. �

To conclude the proof of Theorem 5.10.12, we have to show how to obtain
definable functions from algebraic formulae.

Proposition 5.10.19. Let M be o-minimal, such that there is at least one
definable constant. Let γ(x;  y) be algebraic. Then there is a finite collection
F of definable functions f( y) such that γ(X) ⊆ F (X) for any set X ⊆ U .
Moreover, if M is decidable, then the set F can be found effectively.

Proof. Let c be a definable constant over M. Given γ, let K be an integer
such that the set {a ∈ U | M |= γ(a, b)} has fewer than K elements for every
 b (see Lemma 5.10.16). For each i < K, define fi( y) to be the ith element
(in the order <) that makes γ(·,  y) true, if it exists, and c, if there is no such
element. Let F = {fi | i < K}. Clearly, each fi is a definable function and
γ(X) ⊆ F (X). If M is decidable, then K can be found, and thus F can be
constructed effectively. �

We now finally complete the proof of Theorem 5.10.12. Given an
FO(SC ,M) formula ϕ( x), we first apply Proposition 5.10.18 to obtain an
algebraic formula γ giving a bound on the output (if it is finite), and then
apply Proposition 5.10.19 to obtain a set of functions F that puts a bound
on the output of ϕ. If M is decidable and quantifier elimination is effective,
then γ can be effectively found (as the natural-active collapse is effective),
and there is an algorithm for constructing F from γ. �

5.10.4 Infinite Query Safety: Reduction

The question of query safety over constraint databases reduces to preserving
certain geometric properties of regions in Rk. If M = 〈U,Ω〉 is an infi-
nite structure, let DS(M) be the class of definable sets over M, that is,
DS(M) =

⋃
n<ω DSn(M), and DSn(M) is the collection of definable subsets

of Un. We use SAlgn for semialgebraic sets in Rn.
Let SC consist of an m-ary relation symbol S, and let ψ(x1, . . . , xn) be an

FO(SC ,M) formula. It defines a map from DSm(M) to DSn(M) as follows:
for any X ∈ DSm(M), ψ(X) = { y | (M, X) |= ψ( y)}.

Now let C be a class of objects in DS(M). We say that an FO(SC ,M)
formula ψ preserves C if for any X ∈ C, ψ(X) ∈ C. The safety question for



5.10 Query Safety 317

constraint databases is the following. Is there an effective syntax for the class
of C-preserving queries?

We now show how this problem can be reduced to finite query safety for
embedded finite models.

Definition 5.10.20. The class C has a canonical representation in DS(M)
if there is a recursive injective function g : N → N with a computable inverse,
and for each n, two functions coden : 2U

n → 2U
m

and decoden : 2U
m → 2U

n

,
where m = g(n), such that:

1. decoden ◦ coden(x) = x if x ∈ DSn(M);
2. |coden(x) |< ω if x ∈ C; decoden(x) ∈ C if x is finite;
3. coden is FO(M)-definable on DSn(M);
4. decoden is FO(M)-definable on finite sets.

Intuitively, the canonical representation is a finite representation of C
within DS(M) that can be defined in first-order logic over M. For example,
one approach to obtaining a canonical representation of convex polytopes
would be to compute their vertices. This suffices to reconstruct the polytope,
and the vertices can be defined by a first-order formula.

Similarly to the finite case, we say that there is an effective syntax for
C-preserving FO(SC ,M) formulae if there exists a recursively enumerable
set of C-preserving FO(SC ,M) formulae such that every C-preserving
FO(SC ,M) formula is equivalent to a formula in this set.

Theorem 5.10.21. Let M = 〈U,Ω〉 be o-minimal, based on a dense order,
and decidable, and have effective quantifier elimination. Suppose C is a class
that has a canonical representation in DS(M). Then there is an effective
syntax for C-preserving FO(SC ,M) formulae.

Proof. Consider an enumeration of all safe FO(SC ,M) queries 〈ϕi〉 on finite
structures (from Proposition 5.10.18, we know that it exists). Let ϕ use an
extra relation symbol of arity m, and assume that n is such that g(n) = m
(where g comes from the definition of canonical representations). Let ϕi have
l parameters, and again let k be such that g(k) = l. If n and k can be found
for a given ϕi, we let ψ be

decodek ◦ ϕi ◦ coden.

This produces the required enumeration. We have to check that every query
of the form decodek ◦ϕi ◦ coden preserves C, and for every C preserving ψ, we
can get a ϕ such that decode ◦ ϕ ◦ code coincides with ψ. It is clear that the
first condition is satisfied: if we have X ∈ C, then coden(X) is finite, hence
ϕi(coden(X)) is finite too, and thus the output of decodek is in C.

For the converse, suppose we have a C-preserving query ψ : DSn(M) →
DSk(M). Define α as follows: α = codek ◦ ψ ◦ decoden. That is, α is a query
DSm(M) → DSl(M). Given this, we notice that
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decodek ◦ α ◦ coden = decodek ◦ codek ◦ ψ ◦ decoden ◦ coden = ψ

on DSn(M). Thus, it remains to show that α is safe. Let X ⊂ Um be finite.
Then decoden(X) ∈ C, decoden(X) ⊂ Un, and Y = ψ(decoden(X)) ∈ DSk(M)
is in C, too. Hence, codek(Y ) is finite. �

We now give two applications to semialgebraic sets and FO + Poly. The
first one gives an example of a geometric class for which coding is easy.

Proposition 5.10.22. The class of convex polytopes has a canonical repre-
sentation in SAlg. Consequently, the class of FO + Poly queries preserving
the property of being a convex polytope has an effective syntax.

Proof. Given a convex polytope X in Rn, its vertices can be found as
V (X) = { x ∈ Rn |  x ∈ X, x �∈ conv(X −  x)}, where conv(·) denotes the
convex hull. Thus, V (X) is definable in FO + Poly. We now define coden.
To simplify the notation, we let it produce a pair of n-ary relations, but
it can be straightforwardly coded by one relation. If X = conv(V (X)),
then coden(X) = (V (X), ∅); otherwise, coden(X) = (Rn, X). The function
decoden : 2R

n × 2R
n → 2R

n

is defined as follows:

decoden(Y, Z) =
{⋃

(�y1,...,�yn+1)∈Y conv({ y1, . . . ,  yn+1}) if Y �= Rn,
Z otherwise.

Clearly, decoden ◦ coden is the identity function for any semialgebraic set;
these functions are also first-order definable. If X is a polytope, V (X) is finite,
and, by Carathéodory’s Theorem, each point of X is contained in the convex
hull of at most n+ 1 vertices of X . Hence, card(coden(X)) ≤ card(V (X))n+1.
If (Y, Z) is finite, then decoden(Y ) is conv(Y ), and thus a convex polytope.
This proves the proposition. �

The second example deals with the case where C is a class of semilinear
sets. We now give two different approaches to showing the following.

Theorem 5.10.23. There is an effective syntax for the class of FO + Poly

queries preserving semilinearity.

One approach to showing this is to prove that the class of semilinear sets
has a canonical representation in the class of semialgebraic sets. This is true,
although the coding scheme is quite complex and not very intuitive. Another
way of showing this theorem is based on the proposition below.

Proposition 5.10.24. For any n > 0, there is an FO + Poly sentence
over SC containing one n-ary relation symbol, which tests whether the input
(which is a semialgebraic set S ⊆ Rn) is semilinear. �
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An effective syntax for FO + Poly queries preserving semilinearity
can then be obtained simply by inserting tests for the input and out-
put being semilinear, and returning the empty set if semilinearity is not
preserved. However, the decision procedure is not much simpler than the
canonical representation, and we are thus very far from a usable language
for FO + Poly-definable queries preserving semilinearity. But the very
fact that such a language exists is an interesting and nontrivial property
of FO + Poly.

5.10.5 Deciding Safety

The safety of FOact(SC ) formulae is already undecidable. However, there are
some nice syntactic subclasses of FOact(SC) for which safety is guaranteed.
We now consider one such subclass – conjunctive queries. The class of
conjunctive queries is defined as a {∃,∧}-fragment of FOact(SC ), that is, as
the set of formulae built from atomic formulae S(·), where S ∈ SC , using
conjunction and existential quantification only. Outputs of such formulae
cannot extend the active domain, and hence they are safe. We now consider a
natural analog of conjunctive queries over embedded finite models. Although
they are no longer guaranteed to produce an output containing only elements
of the active domain, their safety remains decidable for underlying structures
such as Rlin and R.

A conjunctive query (CQ) is an FO(SC ,M) formula of the form

ϕ( x) ≡ ∃ y∈adom α1( x,  y) ∧ . . . ∧ αk( x,  y) ∧ γ( x,  y),

where α1( x,  y), . . . , αk( x,  y), k ≥ 0 are formulae of the form S( u), where
S ∈ SC and  u is a subtuple of ( x,  y), and γ is an FO(M) formula.

Theorem 5.10.25. Let M be o-minimal, based on a dense order, and
decidable, and admit effective quantifier elimination. Then it is decidable
whether a given conjunctive query in FO(SC ,M) is safe.

Proof. Given two formulae ϕ( x) and ψ( x), by the containment ϕ ⊆ ψ we
mean ϕ(D) ⊆ ψ(D) for any finite D. From Proposition 5.10.18 we obtain that
for any FO(SC ,M) formula ϕ( x), there exists an active-semantics CQ ψ( x)
such that ϕ is safe iff ϕ ⊆ ψ. The theorem now follows from the lemma below.

Lemma 5.10.26. Let M be as in Theorem 5.10.25. Then containment is
decidable for conjunctive queries.

Proof. Suppose we are given CQs ϕ( x) and ψ( x). We claim that one can
effectively find a number k such that ϕ ⊆ ψ iff for every D with at most k
tuples, ϕ(D) ⊆ ψ(D). This clearly implies the result, as the latter condition
can be expressed as an FO(M) sentence.
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To prove the claim, assume that ϕ( x) is ∃ y∈adom
∧l
i=1 αi( ui)∧γ( x,  y). We

claim that k can be taken to be l plus the length of  y. Assume there is an  a ∈
ϕ(D)−ψ(D). Let  b witness D |= ϕ( a); we then see that there is a structure D′

that contains at most k tuples from D such that D′ |= ϕ( a) (it has to contain
enough tuples to ensure that all elements of  b are in adom(D′)), and that
∧l
i=1 αi( ui) holds. But then D′ |= ¬ψ( a), for otherwise we would have D |=

ψ( a). Thus, any counterexample to containment is witnessed by a ≤ k-element
structure. This finishes the proof of Lemma 5.10.26 and of the theorem. �

The proof can be extended to show a slightly more general result:

Corollary 5.10.27. It is decidable whether any Boolean combination of
FO + Lin or FO + Poly conjunctive queries is safe.

Note, however, that the safety of conjunctive queries is not decidable over
every structure.

Proposition 5.10.28. Let N = 〈N,+, ·〉. Then the safety of conjunctive
queries in FO(SC ,N) is undecidable, for any SC .

Proof. Define ϕ( x) to be p( x) = 0 for some Diophantine equation. This is
a CQ in FO(SC ,M), and it is safe iff p( x) = 0 has finitely many solutions.
However, this property of Diophantine equations is undecidable. �

Some decidability results can be shown for constraint databases as well.
We shall give only one example here, for the case of queries preserving the
property of being a convex polytope.

Lemma 5.10.29. Let ϕ(x1, . . . , xn) be a union of FO + Poly conjunctive
queries that mention one m-ary relational symbol S. Then one can effectively
find two numbers k and l such that ϕ preserves the property of being a convex
polytope iff, for every convex polytope D in Rm with at most k vertices, the
output ϕ(D) is a convex polytope with at most l vertices in Rn.

With this lemma, one can show the following result.

Proposition 5.10.30. It is decidable whether a union of conjunctive
FO + Poly queries preserves the property of being a convex polytope.

Proof. Note that for each i, there is an FO + Poly query ψi for each i that
tests whether a set D is a convex polytope with at most i vertices: it checks
that the set of vertices V (D) = {x ∈ D | x �∈ conv(D− x)} has at most i ele-
ments, and that D = conv(V (D)). In order to check whether ϕ in FO + Poly

preserves convex polytopes, one applies Lemma 5.10.29 to compute the num-
bers k and l, and then writes a sentence saying that for every set V in Rm with
at most k elements, applying ϕ to conv(V ) yields a polytope with at most l
vertices. Since conv and ψl are definable, this property can be expressed as
an FO(R) sentence. The proposition now follows from the decidability of the
theory of R. �
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5.10.6 Dichotomy Theorem for Embedded Finite Models

We now show a simple but powerful combinatorial structure theorem, saying
that over a well-behaved structure, outputs of safe queries cannot grow
arbitrarily large in terms of the size of the input. We use the notation size(D)
for the size of a finite structure, measured here as the total number of tuples.
It can be measured equivalently as the cardinality of the active domain,
or the number of tuples multiplied by their arity, and all the results will
still hold.

Theorem 5.10.31 (Dichotomy Theorem). Let M be o-minimal and based
on a dense order. Let ϕ( x) be an FO(SC ,M) formula. Then there exists a
polynomial pϕ : R → R such that, for any finite SC-structure D, either ϕ(D)
is infinite or size(ϕ(D)) ≤ pϕ(size(D)).

Proof. Expand Ω by one constant (this does not violate o-minimality) and
apply Theorem 5.10.12. �

The Dichotomy Theorem can also be stated in terms of a function mea-
suring the growth of the output size. We define growthϕ : N → N ∪ {∞} as

growthϕ(n) = max{size(ϕ(D)) | size(D) = n}.

Corollary 5.10.32. Let ϕ( x) be an FO(SC ,M) formula for M as in Theo-
rem 5.10.31. Then there exists a polynomial pϕ such that, for every n ∈ N,
either growthϕ(n) = ∞ or growthϕ(n) ≤ pϕ(n). �

As we have often seen in this chapter, the assumptions about the structure
are extremely important. Below, we show that the Dichotomy Theorem fails
over some simple decidable structures on the natural numbers.

Proposition 5.10.33. Let M = 〈N,+, <, 1〉. Then there exists an
FOact(SC ,M) formula ϕ(x) such that growthϕ(n) = 2n for every n > 0.

Proof. Let SC consist of one unary relation S. We show that there exists
an FOact(SC ,M) sentence Ψ such that S |= Ψ iff S is of the form
Sn = {2i | 1 ≤ i ≤ n}. This is done by letting Ψ be

(∃x∈adom x = 1 + 1 ∧ S(x))
∧ (∀x∈adom x = 1 + 1 ∨ x > 1 + 1)
∧ (∀x∈adom x = 1 + 1 ∨ ∃y∈adom y + y = x)
∧ (∀x∈adom (∀y∈adom y < x ∨ y = x) ∨ (∃y∈adom y = x + x)).

Now define ϕ(x) as Ψ ∧ ¬(x < 1) ∧ (∃y ∈ adom x < y ∨ x = y). Then, for S
not of the form Sn, we have ϕ(S) = ∅, and ϕ(Sn) = {1, 2, 3, . . . , 2n}. Since
card(Sn) = n, this implies growthϕ(n) = 2n for n > 0. �
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The Dichotomy Theorem gives easy expressivity bounds based on the
growth of the output size. For example, even if we use exponentiation, we still
cannot express any queries with superpolynomial growth, since 〈R,+, ·, ex〉
is o-minimal.

To give another application, consider the following problem: given a
polyhedron P and ε > 0, find a triangulation of P of mesh < ε. That
is, a triangulation such that the diameter of each simplex (a triangle in
dimension 2) is less than ε. Every polyhedron admits such a triangulation.
The output of such a query can be structured in several ways, for example
by storing the information about the face structure of the triangulation.
We impose only one requirement, that the vertices of the triangulation be
computable.

Proposition 5.10.34. Let M = 〈R, Ω〉 be an o-minimal expansion of the
real field R. Then there is no FO(SC ,M) formula that finds a triangulation
of a given polygon with a given mesh. This continues to hold if we restrict
ourselves to convex polytopes on a plane.

Proof. Suppose that such a formula exists; now consider a new query that
does the following. Its input is one binary relation containing a set X of
points  x1, . . . ,  xn on the real plane, and one unary relation containing a single
real number ε > 0. First, in FO + Poly, construct conv(X), and then find
vertices of a triangulation with mesh < ε. This is clearly a safe query, so, by
the Dichotomy Theorem, there exists a polynomial p such that the number
of vertices of the triangulation is at most m = p(n + 1) (n + 1 is the size
of the input). Let d be the maximal distance between the points  xi,  xj (and
thus the diameter of conv(X)). Since the segment [ xi,  xj ] with d( xi,  xj) = d
must be covered by the simplexes of the triangulation, it is possible to find
a number ε such that it cannot be covered by fewer than m + 1 triangles of
diameter ε, and hence the number of points in the triangulation is greater
than m. This contradiction proves the proposition. �

Analogs of the results for growth bounds can be obtained in the constraint
database setting as well; we give one example below.

Proposition 5.10.35. Let ϕ( x) be an FO + Poly formula that preserves
the property of being a convex polytope. Then there exists a polynomial pϕ
such that, whenever D is a convex polytope with n vertices, ϕ(D) has at most
pϕ(n) vertices.

5.11 Database Considerations

In this section, we consider two aspects of embedded finite models and
constraint databases, motivated primarily by database considerations: adding
aggregate functions, and higher-order features.
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5.11.1 Aggregate Operators

Aggregate operators such as COUNT, SUM, and AVG form an indispensable
part of database query languages for the relational data model. How can they
be used in the settings of embedded finite models and constraint databases?

We shall now briefly consider two aggregate operators. The average
operator, present in all commercial database systems, returns the average
value of a column of a relation. The volume operator, used in geographical
information systems, returns the volume (or area) of a set. Here we investi-
gate the possibility of incorporating these operators into languages such as
FO + Poly and FO + Lin.

Let ϕ( x,  y) be a formula in FO(SC ,M), with  x and  y being of length n and
m, respectively. For  a ∈ Un, we define ϕ( a,D) to be { b ∈ Um | D |= ϕ( x,  y)}.

Let Avg(C) be the average value of a finite set C ⊂ R; we let Avg(C) = 0
if C is empty or infinite. We say that the average operator Avg is definable
over M if, for every vocabulary SC and every FO(SC ,M) formula ϕ( x, y),
there exists an FO(SC ,M) formula ψ( x, z) such that for every SC -structure
D, D |= ψ( a, c) iff c = Avg(ϕ( a,D)).

An easy application of collapse results shows the following.

Proposition 5.11.1. Let M = 〈R, Ω〉 be o-minimal, and such that the
expansion M = 〈R, Ω,+, ·〉 is o-minimal as well (for example, R,Rlin). Then
the average operator Avg is not definable over M.

We leave this as an exercise, but we shall soon prove a more general
result. Since Avg is not definable, one may consider several ways to overcome
this. One possibility is to approximate it, rather than define it precisely.
What could such an approximation be? Clearly, we cannot hope to define
an ε-interval around the value of Avg(ϕ( a,D)), as then that value would be
definable as the center of the interval. Instead, we settle for a little less: we
want to produce a formula defining a nonempty set that lies in that ε-interval.

We say that the average operator Avg
ε, ε > 0, is definable over M if, for

every vocabulary SC and every FO(SC ,M) formula ϕ( x, y), there exists an
FO(SC ,M) formula ψ( x, z) such that for every SC -structure D, and every
 a, the following two conditions hold:

1. D |= ∃z ψ( a, z) (that is, ψ( a,D) �= ∅); and
2. if D |= ψ( a, c), then |c−Avg(ϕ( a,D))| < ε.

We say that the average operator Avg
ε
I , ε > 0, is definable over M if the

above is true whenever ϕ( a,D) ⊆ I = [0, 1].
We shall now show the inexpressibility result for these queries. Recall that

all previous inexpressibility results (with the exception of the result on topo-
logical queries) were proved by reductions to generic queries. Here we cannot
easily find such reductions, as approximating queries are extremely non-
generic: they do not say anything about the behavior on the ε-interval, other
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than that some point of the interval satisfies the formula. The proof below
shows a way to circumvent the problem of “extremely nongeneric” queries.

Theorem 5.11.2. Let M = 〈R, Ω〉 be o-minimal, and such that the expansion
M = 〈R, Ω,+, ·〉 is o-minimal as well. Then the average operators Avg

ε (for
any ε > 0) and Avg

ε
I (for 0 < ε < 1/2) are not definable over M.

Proof. Let SC consist of two unary relations, U1 and U2. Let c1, c2 > 1 be two
real numbers. We say that Φ is a (c1, c2)-separating sentence if, for any finite
instance D of SC , it is the case that card(U1) > c1 · card(U2) implies D |= Φ
and card(U2) > c2 · card(U1) implies D |= ¬Φ. Note that this definition says
nothing about the case when (1/c2) ·card(U2) ≤ card(U1) ≤ c1 ·card(U2), and
thus a direct application of bounds on the expressiveness of generic queries
is impossible.

Lemma 5.11.3. Let M be as in the theorem, let c1, c2 > 1, and let SC be as
above. Then no (c1, c2)-separating sentence is definable in FO(SC ,M).

Proof of the lemma. Assume that there is a (c1, c2)-separating sentence Φ.
From the natural-active collapse, we conclude that there is an FOact(SC ,M′)
(c1, c2)-separating sentence Φ′ for some definable expansion M′ of M that
has quantifier elimination. From the Ramsey property of active-semantics
formulae (Proposition 5.5.5), we obtain that there is an infinite set Y ⊆ U
and an FOact(SC , <) sentence Ψ such that, for every SC -structure D with
adom(D) ⊂ Y , we have D |= Φ′ iff D |= Ψ . Thus, it remains to show that
FOact(SC , <) cannot express a (c1, c2)-separating sentence Ψ on instances
over an infinite set.

Assume that it can, and let q be the quantifier rank of Ψ . We now
consider two instances over Y . In both instances D1 and D2, all elements
of U1 precede U2 in the linear order <. In D1, card(U1) = �c1(2q + 1)� and
card(U2) = 2q+1; in D2, card(U1) = 2q+1 and card(U2) = �c2(2q+1)�. Since
Ψ is a (c1, c2)-separating sentence, we must have D1 |= Ψ and D2 |= ¬Ψ .
It is then easy to obtain a contradiction by showing that D1 |= Ψ iff
D2 |= Ψ . This is done by proving that the duplicator can win in a q-round
Ehrenfeucht–Fräıssé game on D1 and D2. This follows from the fact that
for every n,m > 2q, the duplicator can win a q-round game on two ordered
sets of cardinalities n and m. Thus, in the case of D1 and D2, the duplicator
picks separate strategies for U1 and U2, and whenever the spoiler plays in
U1, the duplicator forgets about the moves in U2 and responds in U1 using
the strategy for U1, and likewise in the case when the spoiler plays in U2. �

Now assume that Avg
ε
I is definable. Again, SC consists of two unary

predicates, U1 and U2. Let Δ = (1− 2ε)/16. Given two finite sets U1 and U2,
we translate them into intervals [0, Δ] and [1−Δ, 1]. By translating a finite
set X with minX = c,maxX = d > c into an interval [a, b], we mean that
we map it to the set X ′ containing exactly the numbers of the form
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a +
(x − c)(b− a)

d− c
,

where x ∈ X ; clearly X ′ ⊂ [a, b]. As the next step, we define
U0

1 = U ′
1 ∪ {4Δ − x | x ∈ U ′

1} and U0
2 = U ′

2 ∪ {2 − 4Δ − x | x ∈ U ′
2}.

We observe that U0
1 ⊆ [0, 4Δ] and U0

2 ⊆ [1− 4Δ, 1].
The preceding argument shows that U0

1 and U0
2 are FO + Poly-definable.

Thus, the set C = U0
1 ∪ U0

2 ⊂ [0, 1] is definable in FO + Poly. Now easy
calculations show that

Avg(C) =
1
8
− ε

4
+

m

n + m
· 3 + 2ε

4
,

where n is the cardinality of U1 and m is the cardinality of U2.
We now define a sentence Φ by letting D |= Φ iff Avg

ε(C) = Avg
ε
I(C) >

1/2. Let

c0 = 1 +
16ε

3− 6ε
> 1.

Assume that m > c0 · n. Plugging this into the equation for Avg(C), we
derive Avg(C) > 1/2 + ε; thus, in this case, Avg

ε(C) > 1/2 no matter which
ε-approximation of the average is picked, and thus D |= Φ. Similarly, if we
assume that n > c0 ·m, we derive Avg(C) < 1/2−ε, and thus Avg

ε(C) < 1/2
and D |= ¬Φ. Hence, Φ is a (c0, c0)-separating sentence, which is definable in
FO(SC , 〈R, Ω,+, ·〉). This contradiction proves the theorem. �

We now briefly consider the spatial aggregate operator volume. First,
it is easy to see that it is not definable in the languages FO + Lin and
FO + Poly. As was mentioned earlier, those languages have the following
fundamental closure property: on a semilinear constraint database D, an
FO + Lin query returns a semilinear set, and likewise, on a semialgebraic
constraint database, an FO + Poly query returns a semialgebraic set.

This closure property can no longer be guaranteed if one allows volume
operators, that is, operators Vol that, for every formula ϕ( x,  y), produce a
formula ψ( x, z) ≡ Vol y ϕ( x,  y) such that D |= ψ( a, v) iff v = Vol(ϕ( a,D)).
To see this for the semilinear case, consider a semilinear set S ⊆ R3 defined
by (x > 0) ∧ (0 < y < x) ∧ (0 < z < x). Let ϕ(x, y, z) be S(x, y, z). Then
Vol(y, z) ϕ(x, y, z) is true on a pair (a, v) with a > 0 iff v = a2, which
shows the failure of closure. In the case of semialgebraic sets, one can define
functions such as lnx or arctan(x) with the help of the volume. These
functions are not semialgebraic.

Volume is not definable, but can it be approximated? The reason to
think that this may be the case is the following result. Suppose ϕ( x,  y) is an
FO(R) formula, defining a semialgebraic set S ⊆ [0, 1]n+m. Then, for every
ε > 0, there is an FO(R) formula ψε( x, z) such that, for every  a ∈ [0, 1]n,
R |= ∃z ϕ( a, z), and for any 0 ≤ v ≤ 1 such that R |= ϕ( a, v), we have
|v − V | < ε, where V is the volume of the set { b ∈ [0, 1]m | R |= ϕ( a, b)}.
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To achieve approximability of volume in FO + Poly, we only have to
replace FO(R) formulae by FO(SC ,R) (that is, FO + Poly) formulae. This
motivates the following definition. We say that, for ε > 0, the operator Vol

ε
I

is definable in FO + Poly if, for every SC and every FO + Poly formula
ϕ( x,  y), there exists a formula ψ( x, z) such that, for any semialgebraic
constraint database D, and every  a ∈ [0, 1]n, the following holds:

1. D |= ∃z ψ( a, z), and
2. if D |= ψ( a, v), then 0 ≤ v ≤ 1 and |v −Vol(ϕ( a,D) ∩ [0, 1]m)| < ε.

However, it turns out that this innocent-looking move from FO(R) to
FO + Poly (that is, FO(SC ,R)) changes the picture completely.

Theorem 5.11.4. The operator Vol
ε
I is not definable in FO + Poly, for

any ε < 1/2.

Proof sketch. The proof is again by reduction to separating sentences; however,
the reduction is more involved than that for the Avg operator. In particular,
the reduction can only be carried out if the input constraint database is finite
and has an initial segment of natural numbers as its active domain. To prove
that FO + Poly cannot define a separating sentence on such structures, one
can no longer use games, and instead has to rely on circuit lower bounds. �

Note that the bound 1/2 is tight: for every ε > 1/2, Vol
ε
I is definable, as

the cases where the volume is 0 or 1 can be tested in FO + Poly, and in all
other cases, 1/2 is an approximation.

5.11.2 Higher-Order Features

So far, we have dealt only with first-order logic over embedded finite models
and constraint databases. As we have shown a number of limitations of
FO(SC ,M) in both contexts, it is natural to ask how to extend it to
overcome those shortcomings. The question arises in both the embedded
and the constraint setting. In the first case, the solution is rather easy, and
essentially follows the standard techniques of (finite) model theory, such as
adding fixpoint operators or second-order quantification. Still, one has to
be careful to avoid getting undecidable languages over nice structures, such
as the real field. In the constraint setting, the answer to this question is a
little trickier, but we shall see that nice languages can still be obtained that
express properties such as topological connectivity.

In the embedded case, we deal here only with adding second-order quan-
tification, but the reader should see that one can similarly add fixpoint or
transitive closure operators, for example. In the case of constraint databases,
we specifically consider the case of topological connectivity, although other
topological queries inexpressible in FO + Poly could be considered as well.
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Second-Order Logic over Embedded Finite Models.

One can define this logic in the general way, as SO(SC ,M), by extending
FO(SC ,M) with second-order quantifiers

∃S ϕ, ∀S ϕ,

where S is a relation symbol not in SC . The semantics is that for some
S ⊆ Uk, ϕ holds, where k is the arity of S (or ϕ holds for all S, in the case
of the universal quantifier). Alternatively, we can define an active-semantics
version of the above, where the quantifiers are

∃S∈adom ϕ, ∀S∈adom ϕ,

and the semantics changes in such a way that S must be a subset of adom(D)k.
We shall denote the fragment of SO(SC ,M) in which all – first-order and
second-order – quantifiers range over the active domain by SOact(SC ,M).

We start by noticing the following:

Proposition 5.11.5. Active-generic collapse holds over every structure
M for second-order logic. That is, every order-generic query definable in
SOact(SC ,M) is definable in SOact(SC ).

Proof. We expand M to M< by adding a symbol <, interpreted as a linear
order (if it is not there already). The proof now follows the proof for
first-order logic, by establishing the Ramsey property (the proof that the
Ramsey property implies the collapse does not change). As the proof of the
Ramsey property is by induction on the formulae, the only additional case to
be considered is that of second-order quantification. It is almost the same as
the case of first-order quantification (see the proof of Proposition 5.5.5). Note
that the order relation < can be eliminated from SOact(SC , <) formulae, as
it is definable in second-order logic. �

Establishing natural-active collapse is harder, as the most naive approach
cannot possibly succeed.

Proposition 5.11.6. Every computable property of finite SC-structures is
expressible in SO(SC ,R).

Proof. In second-order logic over R (in fact, even Rlin), one can define the
set of natural numbers by the following formula ϕ(n):

∃P [P (0)∧(∀x (0 < |x| < 1 → ¬P (x)))∧(∀x > 0 (P (x) ↔ P (x−1)))] ∧ P (n).

Then, for any finite SC -structure over R, one can state in second-order logic
that there exists an isomorphic structure over N, and in first-order logic over
〈N,+, ·〉 one can test an arbitrary computable property of such a structure. �
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At the same time, every generic query in SOact(SC ,R) is in
SOact(SC ) and thus its complexity is in the polynomial hierarchy; hence
SO(SC ,R) �= SOact(SC ,R).

To overcome this problem, we introduce a hybrid second-order logic
HSO(SC ,M) as a restriction of SO(SC ,M), in which all second-order
quantifiers range over the active domain (but first-order quantifiers can still
range over U). Then HSOact(SC ,M) is the restriction of HSO(SC ,M) in
which all first-order quantifiers range over the active domain.

Proposition 5.11.7. Let M be o-minimal and admit quantifier elimination.
Then hybrid second-order logic has a natural-active collapse over M: that is,
HSO(SC ,M) = HSOact(SC ,M). Furthermore, if the theory of M is decidable
and quantifier elimination is effective, then there is an effective transformation
of HSO(SC ,M) formulae into equivalent HSOact(SC ,M) formulae.

The proof of this result is very similar to the proof in the first-order case.
It is by induction on the formulae, with only the case of ∃zα being nontrivial.
In this case, one proves the exact analog of Lemma 5.6.8, by using essentially
the same proof, as the equivalences (∗) in that proof are preserved under the
addition of active-domain second-order quantifiers.

Thus, every generic query in HSO(SC ,R) is definable in SOact(SC ); that
is, the behavior of hybrid second-order logic is similar to that of first-order
logic, as one can apply known bounds from finite model theory in the
embedded context.

Connectivity and Constraint Databases

While it has been shown that topological connectivity is not definable in
languages such as FO + Lin and FO + Poly, it is a very useful query in
many applications of spatial databases, and one would want to have a
language capable of expressing it. The situation is somewhat similar to that
of first-order logic on finite relational structures. As FO cannot express graph
connectivity or transitive closure, one enriches the logic by adding fixpoints,
transitive closure operators, or second-order quantification, to give it enough
power to express some desirable queries.

A similar approach is unlikely to work for constraint databases. If one
adds fixpoints straightforwardly to FO + Lin or FO + Poly, one loses the
crucial closure property. To see this, note that by iterating the semilinear
relation x = 2y, one obtains relations x = 4y, x = 8y, . . ., x = 2ny, . . ., and
thus one can define the set of all powers of 2. This set is not semilinear (nor
semialgebraic), which shows that FO + Lin and FO + Poly are not closed
under fixpoint operators.

To remedy this, we take the simplest possible approach: if we need topo-
logical connectivity, we just add it to the language. In this way, we obtain the
languages FO + Poly+C and FO + Lin+C by extending the definition of the
language by the following: for every formula ϕ( x,  y), there is a new formula
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ψ( x) ≡ C y ϕ( x,  y).

The semantics is as follows. Given a constraint database D, and a tuple  a of
the same length as  x, let ϕ( a,D) = { b | D |= ϕ( a, b)}. Then

D |= ψ( a) iff ϕ( a,D) is connected.

The main property of these languages is that they are closed; the proofs,
however, are quite different for the semialgebraic and the semilinear case.

Proposition 5.11.8. FO + Poly + C is closed; that is, on a semialgebraic
constraint database, an FO + Poly + C query produces a semialgebraic set.

Proof. The proof is by induction on the formulae. The only nontrivial case
is that of ψ( x) ≡ C y ϕ( x,  y). Assume that on D, ϕ defines a set S ⊆ Rn+m,
where n is the length of  x and m is the length of  y. Let S�a denote the set
{ b | ( a, b) ∈ S} ⊆ Rm for  a ∈ Rn. A result in algebraic geometry known
as the Local Triviality Theorem states that for any semialgebraic set S as
defined above, there is a partition Rn = Y1 ∪ . . . ∪ Yk such that each Yi is
semialgebraic, and for  a1, a2 ∈ Yi, the sets S�a1 and S�a2 are homeomorphic. In
particular, either all sets S�a, a ∈ Yi are connected, or none of them is. Hence,
the result of ψ on D is a union of some Yis, and thus semialgebraic. �

The reason we cannot use the same proof for FO + Lin is that the Local
Triviality Theorem fails over Rlin. In the proof above, we used only a part
of that theorem, which says that the fibers S�a have finitely many topological
types. But it also asserts that there are semialgebraic homeomorphisms
between sets S�a1 and S�a2 ,  a1, a2 ∈ Yi. An analog of this statement does
not hold for semilinear sets, and hence the Local Triviality Theorem is not
applicable in the semilinear case. (In fact, one can prove local triviality for
o-minimal expansions of the real field R.)

There are two ways of circumventing the problem. One, quite complex, is
to show that the first part of the Local Triviality Theorem still holds for the
case of semilinear sets. But we can also give a simple direct proof of closure
of FO + Lin + C, which does not require the Local Triviality Theorem.

Proposition 5.11.9. FO + Lin + C is closed; that is, on a semilinear
constraint database, an FO + Lin + C query produces a semilinear set.

Proof. The proof again is by induction on the formulae, and we consider only
the case of ψ( x) ≡ C y ϕ( x,  y). Assume that on D, ϕ defines a semilinear set
S ⊆ Rn+m. Since S is semilinear, it has a representation of the form

k∨

i=1

ψi, ψi ≡
li∧

j=1

〈 aij ,  x〉 ϑ 〈 bij ,  y〉+ cij

where 〈·, ·〉 denotes the inner product. Let Zi be the subset of Rn+m defined
by ψi. For every  a ∈ Rn, the set Zi�a is a convex polyhedron, and thus it is
connected (unless it is empty).
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Let T1, . . . , Tr be an arbitrary collection of semilinear sets in Rp. Define
a relation Ti ≈ Tj if cl(Ti)∩ Tj �= ∅ or cl(Tj)∩ Ti �= ∅, where cl(·) denotes the
closure of a set. Then T1 ∪ . . .∪ Tk is connected iff the undirected graph with
the Tis as vertices and ≈ as the edge relation is connected.

Using this fact, we conclude the proof as follows. Given an undirected
graph G on nodes 1, . . . , k, we write  a→D G if

there is an edge (i, j) in G iff Zi�a ≈ Zj�a.

We have seen earlier that closure is FO + Lin-definable. Hence, there is an
FO + Lin formula αG( x) such that D |= αG( a) iff  a →D G. This and the
statement in the previous paragraph, imply that

∨

G connected

αG( x)

is equivalent to ψ( x), where the disjunction is taken over connected undirected
graphs on {1, . . . , k}. This proves closure, since the above is an FO + Lin

formula. �

Note that the formula produced in the proof of Proposition 5.11.9 may
be very large, as the number of connected graphs on a k-element set is
exponential in k. It turns out that a much more compact formula can always
be obtained; the proof of this, however, is much more involved than the simple
proof that we provided above. See the bibliographic notes for more detail.

5.12 Bibliographic Notes

Sections 5.2 and 5.3

For a general introduction to finite model theory, see [31, 48, 57] and the
previous chapters of this book. A standard reference on database theory is [1],
which also covers many topics of finite model theory. Constraint databases
were introduced in [49]; for a comprehensive treatment of this topic, see [55].
Mixing the finite and the infinite in the context of databases is discussed
in a number of papers; see, for example, [25, 37]. The semialgebraic “face”
example is taken from [22], and the semilinear one from [55].

Other approaches to combining the finite and the infinite in model theory
include metafinite structures [37] (which, in our terminology, can be described
as triples consisting of a finite structure D, an infinite structure M, and a
set of functions from adom(D) to tuples over M), recursive structures [43]
(infinite structures in which every relation is computable, and thus has a finite
description by means of a Turing machine), and automatic structures [20, 51]
(in which predicates are given by finite automata, as opposed to arbitrary
Turing machines).
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Section 5.4

The notion of genericity is standard in the field of relational databases,
see [1, 46]. Various forms of collapse results were introduced in [11, 45, 61].

Section 5.5

The active-generic collapse was proved independently in [11] and [59]. The
Ramsey property is from [11], and the proof given here follows closely the
one in [15]. Analytic signatures and total collapse are also discussed in [15].
For a survey of Ramsey theory, see [36]. That there exist properties definable
in FOact(SC , <) but not FOact(SC ) is shown in [1] (the result is attributed
to Gurevich).

Section 5.6

Proposition 5.6.1 is a standard exercise on coding in first-order logic over
〈N,+, ·〉 (cf. [32]); the result was explicitly stated in this form in [41]. The
natural-active collapse without an interpreted structure (Theorem 5.6.3)
was proved in [45]. An earlier weaker result [3] showed that unrestricted
quantification can always be replaced by quantification over some finite
superset of the active domain (the “4 Russians Theorem”).

The concept of o-minimality was introduced in [62], and has been
extensively studied in the model-theoretic literature; see [75] for an overview.
The o-minimality of the exponential field is from [79]; [74] shows that it does
not have quantifier elimination. The Uniform Bounds Theorem (Theorem
5.6.7) is from [63]. For general model-theoretic properties of structures, see
standard texts such as [26].

The natural-active collapse (Theorem 5.6.4) is from [15]. It was proved
earlier by nonconstructive means in [14]. The linear case, sketched in Section
5.6.4, was proved in [61]. (See also [71].) The material of Sect. 5.6.5 is from [15],
except for Proposition 5.6.10, which is from [34]. A version of the algorithm
for natural-active collapse adapted to FO + Poly was presented in [57].

A different proof of natural-active collapse for FO + Poly was given in [8].
It applies only to finite structures in which all relations are unary, but achieves
much better complexity bounds than the general algorithm presented here.

The natural-generic collapse (Sect. 5.6.7) was the first collapse result
proved for polynomial constraints, see [11]. That proof used the technique
of nonstandard universes; here we derived the result as a corollary of the
natural-active collapse. Some extensions of this collapse result are known,
for example for quasi-o-minimal structures [9] (which include all o-minimal
ones, as well as 〈N,+, <〉) and for a larger class of structures with finite VC
dimension (Theorem 5.6.13) [7].

More expressivity bounds were proved in [27], which showed that parity
is not definable in FO + Poly even if the input is a set of natural numbers
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such that the distance between two consecutive elements is 1 or 2. That
paper also extended some expressivity bounds to algebraically closed fields.

Section 5.7

For the general model-theoretic background, the reader is referred to [26, 44].
The notion of pseudo-finite homogeneity was introduced in [9, 34]. Theorem
5.7.3 is from [34], as are the notion of pseudo-finite saturation and Proposition
5.7.4. The proof of Proposition 5.7.6 uses the fact that term algebras are
stable, and some conditions for showing that a structure does not have the
finite cover property; these conditions can be found in [44, 64].

The isolation property, Proposition 5.7.8, and Corollary 5.7.9 are from [9].
Proposition 5.7.10 is from [19]. Proposition 5.7.11 is a special case of a
more general result (which shows the isolation property for quasi-o-minimal
structures) in [9]; see also [34].

Section 5.8

For more on the VC dimension and its applications in learning theory,
see [5, 21]. For applications in logic, and for the basic facts used in the proof
of Theorem 5.8.1, see [56, 68, 75]. In particular, [56] shows that o-minimal
structures have finite VC dimension.

The class AC0/poly used in the section is a standard complexity class
(a.k.a. nonuniform AC0); see, for example, [48, 57]. Bounds for AC0/poly
implying the inexpressibility of queries such as parity and connectivity can
be found in [4, 29, 35].

Theorem 5.8.1 is from [19]. The material of Sect. 5.8.1 is partly from [59]
(which showed one direction of Theorem 5.8.2; the other direction is from [18]).
In [15] it is shown how to use a random ternary relation to express even more
queries (for example, parity), thereby refuting a conjecture in [41] that tied
such expressivity results to the decidability of the theory of the underlying
structure. For basic information about definability over random graphs (and
more generally, random structures), the reader is referred to [31, 44, 57, 69]).

The material of Sect. 5.8.2, including Proposition 5.8.3, is from [19] (which
gives a slightly better complexity bound). The structure S was studied in [23],
where the connection with regular languages was shown; in [20], which showed
how to interpret automatic structures in it; and in [19], where further model-
theoretic properties, including infinite VC dimension, were proved.

Section 5.9

The material on reductions (Sect. 5.9.1) is from [41], which shows many
inexpressibility results for FO + Poly by reducing them to parity. Topo-
logical properties (Section 5.9.2) of constraint databases were studied
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in [53, 54, 60, 67]. The conical local structure of semialgebraic sets is
described in the texts [10, 22]. Theorem 5.9.3 is from [53]. The failure of
Theorem 5.9.3 for multiple regions was shown in [39].

Sect. 5.9.3 is based on [77], which contains many examples of queries that
are expressible and inexpressible in FO + Lin. More examples of the power of
FO + Lin can be found in [2], where it was also conjectured that ExistsLine
is not expressible in FO + Lin. That was first proved in [13], but the proof
was very complicated; the simple proof given here is due to [66]. The result
for the line segment connecting two boundary points is due to [13].

Section 5.10

Safety is a central notion in relational database theory; see [1]. See [78] for
undecidability of safety for first-order logic. Safety with scalar functions was
studied in [33]. The STATE-SAFETY problem was introduced in [3, 6],
where decidability was proved for some structures (e.g. 〈N, <〉).

The concept of safe translation is from [16]. Proposition 5.10.4 is from [70]
(where a complete description of the structure and the proof of decidability
can be found). Propositions 5.10.5 and 5.10.6 are from [16]. Extensions to
Datalog are discussed in [65, 72].

Sect. 5.10.3 follows [16] closely, except that here we have presented
range-restriction in terms of definable functions, rather than just algebraic
formulae. For the properties of semilinear and semialgebraic functions used
in the proof of Corollary 5.10.15, see [58, 75].

The reduction from infinite safety to finite safety (Theorem 5.10.21),
as well as the canonical representation for convex polytopes, is from [16].
More examples of canonical representations can be found in [16]. The first
proof of Theorem 5.10.23 is based on applying Theorem 5.10.21 to canonical
representations for semilinear sets, given in [76]. The other proof uses the
decidability of semilinearity, proved in [30].

The decidability result for the safety of conjunctive queries over o-minimal
structures is from [16]; it uses the decidability of containment, proved in [47].
(See also Chapter 2 of [55], which discusses some subtle points related to
the decidability result of [47].) The undecidability of finiteness of the set of
solutions of a Diophantine equation (which proves Proposition 5.10.28) is
from [28]. Proposition 5.10.30 is from [16]. All results in the section on the
Dichotomy Theorem are from [16].

Section 5.11

Aggregation is a standard feature of database query languages [1, 73]. The
results dealing with the average operator are from [17]. How to play a game
on ordered sets is described in [42].
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That volumes can be approximated for first-order formulae over the real
field was shown in [50, 52]. Theorem 5.11.4, showing that these results do
not extend to constraint databases, is from [17].

Hybrid logics were introduced in [15], where some collapse results were
proved. There exist higher-order logics that capture complexity classes over
constraint databases defined with order [38] and with linear constraints [40].
The material on connectivity is from [12]. The Local Triviality Theorem
used in the proof of Proposition 5.11.8 can be found in [10, 22, 75]. The
proof of Proposition 5.11.9 in [12] is more involved and relies on special
properties of cylindric decompositions [24] of semilinear sets; the simple proof
presented here is due to [80] (the simplicity is achieved at the expense of
exponential-size formulae).
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6

A Logical Approach to Constraint Satisfaction

Phokion G. Kolaitis and Moshe Y. Vardi

6.1 Introduction

Since the early 1970s, researchers in artificial intelligence (AI) have investi-
gated a class of combinatorial problems that have become known, collectively,
as the Constraint-Satisfaction problem (CSP). The input to such
a problem consists of a set of variables, a set of possible values for the
variables, and a set of constraints between the variables; the question is to
determine whether there is an assignment of values to the variables that
satisfies the given constraints. The study of constraint satisfaction occupies
a prominent place in artificial intelligence, because many problems that arise
in various areas can be modeled as constraint-satisfaction problems in a
natural way; these areas include Boolean satisfiability, temporal reasoning,
belief maintenance, machine vision, and scheduling (see [20, 50, 56, 64]). In
its full generality, constraint satisfaction is an NP-complete problem. For this
reason, researchers in artificial intelligence have pursued both heuristics for
constraint-satisfaction problems and tractable cases obtained by imposing
various restrictions on the input (see [20, 24, 34, 54, 58]).

Over the past decade, it has become clear that there is an intimate
connection between constraint satisfaction and various problems in database
theory and finite-model theory. The goal of this chapter is to describe several
such connections. We start in Sect. 6.2 by defining the constraint-satisfaction
problem and showing how it can be phrased also as a homomorphism prob-
lem, a conjunctive-query evaluation problem, or a join-evaluation problem. In
Sect. 6.3, we discuss the computational complexity of constraint satisfaction
and show that it can be studied from two perspectives, a uniform perspective
and a nonuniform perspective. We relate both perspectives to the study of
the computational complexity of query evaluation. In Sect. 6.4, we focus
on the nonuniform case and describe a Dichotomy Conjecture, asserting
that every nonuniform constraint-satisfaction problem is either in PTIME
or NP-complete. In Sect. 6.5, we examine the complexity of nonuniform
constraint satisfaction from a logical perspective and show that it is related
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to the data complexity of a fragment of existential second-order logic. We
continue in Sect. 6.6, where we offer a logical approach, via definability in
Datalog, to establishing the tractability of nonuniform constraint-satisfaction
problems. In Sect. 6.7, we leverage the connection between Datalog and
certain pebble games, and show how these pebble games offer an algorithmic
approach to solving uniform constraint-satisfaction problems. In Sect. 6.8, we
relate these pebble games to consistency properties of constraint-satisfaction
instances, a well-known approach in constraint solving. Finally, in Sect. 6.9,
we show how the same pebble games can be used to identify large “islands
of tractability” in the constraint-satisfaction terrain that are based on the
concept of bounded treewidth.

Much of the logical machinery used in this chapter is described in detail
in Chap. 2. For a book-length treatment of constraint satisfaction from
the perspective of graph homomorphism, see [44]. Two books on constraint
programming and constraint processing are [3, 23].

6.2 Preliminaries

The standard terminology in AI formalizes an instance P of constraint
satisfaction as a triple (V,D, C), where

• V is a set of variables;
• D is a set of values, referred to as the domain;
• C is a collection of constraints C1, . . . , Cq, where each constraint Ci is

a pair (t, R), and where t is a k-tuple over V , k ≥ 1, referred to as the
scope of the constraint, and R is a k-relation on D.

A solution of such an instance is a mapping h : V → D such that, for each
constraint (t, R) in C, we have that h(t) ∈ R, where h is defined on tuples
componentwise, that is, if t = (a1, . . . , ak), then h(t) = (h(a1), . . . , h(ak)).
The Constraint-Satisfaction problem asks whether a given instance is
solvable, i.e., whether it has a solution. Note that, without loss of generality,
we may assume that all constraints (t, Ri) involving the same scope t have
been consolidated into a single constraint (t, R), where R is the intersection
of all relations Ri constraining t. Thus, we can assume that each tuple t of
variables occurs at most once in the collection C.

Consider the Boolean satisfiability problem 3-Sat: given a 3CNF-formula
ϕ with variables x1, . . . , xn and clauses c1, . . . , cm, is ϕ satisfiable? Such
an instance of 3-Sat can be thought of as a Constraint-Satisfaction

instance in which the set of variables is V = {x1, . . . , xn}, the domain is
D = {0, 1}, and the constraints are determined by the clauses of ϕ. For
example, a clause of the form (¬x ∨ ¬y ∨ z) gives rise to the constraint
((x, y, z), {0, 1}3−{(1, 1, 0)}). In an analogous manner, 3-Colorability can
be modeled as a Constraint-Satisfaction problem. Indeed, an instance
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G = (V,E) of 3-Colorability can be thought of as a Constraint-

Satisfaction instance in which the set of variables is the set V of the
nodes of the graph G, the domain is the set D = {r, b, g} of three col-
ors, and the constraints are the pairs ((u, v), Q), where (u, v) ∈ E and
Q = {(r, b)(b, r), (r, g)(g, r), (b, g)(g, b)} is the disequality relation on D.

Let A and B be two relational structures1 over the same vocabulary. A
homomorphism h from A to B is a mapping h : A→ B from the universe A
of A to the universe B of B such that, for every relation RA of A and every
tuple (a1, . . . , ak) ∈ RA, we have that (h(a1), . . . , h(ak)) ∈ RB. The existence
of a homomorphism from A to B is denoted by A → B, or by A →h B,
when we want to name the homomorphism h explicitly. An important
observation made in [29]2 is that every such constraint-satisfaction instance
P = (V,D, C) can be viewed as an instance of the Homomorphism problem,
asking whether there is a homomorphism between two structures AP and
BP that are obtained from P in the following way:

• The universe of AP is V and the universe of BP is D;
• The relations of BP are the distinct relations R occurring in C;
• The relations of AP are defined as follows: for each distinct relation R on

D occurring in C, we have the relation RA = {t : (t, R) ∈ C}. Thus, RA

consists of all scopes associated with R.

We call (AP ,BP) the homomorphism instance of P . Conversely, it is also clear
that every instance of the homomorphism problem between two structures A
and B can be viewed as a constraint-satisfaction instance CSP(A,B) by sim-
ply “breaking up” each relation RA on A as follows: we generate a constraint
(t, RB) for each t ∈ RA. We call CSP(A,B) the constraint-satisfaction
instance of (A,B). Thus, as pointed out in [29], the constraint-satisfaction
problem can be identified with the homomorphism problem.

To illustrate the passage from the constraint-satisfaction problem to the
homomorphism problem, let us consider 3-Sat. A 3CNF-formula ϕ with
variables x1, . . . , xn and clauses c1, . . . , cm gives rise to a homomorphism
instance (Aϕ,Bϕ), defined as follows:

• Aϕ = ({x1, . . . , xn}, Rϕ0 , R
ϕ
1 , R

ϕ
2 , R

ϕ
3 ), where Rϕi is the ternary relation

consisting of all triples (x, y, z) of variables that occur in a clause of ϕ with i
negated literals, 0 ≤ i ≤ 3; for instance, Rϕ2 consists of all triples (x, y, z) of
variables such that (¬x∨¬y∨ z) is a clause of ϕ (here, we assume without
loss of generality that the negated literals precede the positive literals).

• Bϕ = ({0, 1}, R0, R1, R2, R3), where Ri consists of all triples that
satisfy a 3-clause in which the first i literals are negated; for instance,
R2 = {0, 1}3 − {1, 1, 0}.

Note that Bϕ does not depend on ϕ. It is clear that ϕ is satisfiable if and
only if there is a homomorphism from Aϕ to Bϕ (in symbols, Aϕ → Bϕ).
1 We consider only finite structures in this chapter.
2 An early version appeared in [30].
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As another example, 3-Colorability is equivalent to the problem of
deciding whether there is a homomorphism h from a given graph G to the
complete graph K3 = ({r, b, g}, {(r, b)(b, r), (r, g)(g, r), (b, g)(g, b)} with three
nodes. More generally, k-Colorability, k ≥ 2, amounts to the existence of
a homomorphism from a given graph G to the complete graph Kk with k
nodes (also known as the k-clique).

Numerous other important NP-complete problems can be viewed as
special cases of the Homomorphism problem (and, hence, also of the
Constraint-Satisfaction problem). For example, consider the Clique

problem: given a graph G and an integer k, does G contain a clique of size
k? Considered as a Homomorphism instance this is equivalent to asking if
there is a homomorphism from the complete graph Kk to G. Considered as
a Constraint-Satisfaction instance, the set of variables is {1, 2, . . . , k},
the domain is the set V of nodes of G, and the constraints are the pairs
((i, j), E) such that i �= j, 1 ≤ i, j ≤ k, and E is the edge relation of G.
For another example, consider the Hamiltonicity problem: given a graph
G = (V,E), does it have a Hamiltonian cycle? This is equivalent to asking
if there is a homomorphism from the structure (V,CV , �=) to the structure
(V,E, �=), where CV is some cycle on the set V of nodes of G and �= is the
disequality relation on V . The NP-completeness of the Homomorphism

problem was pointed out explicitly in [53]. In this chapter, we use both the
traditional AI formulation of constraint satisfaction and the formulation in
terms of the Homomorphism problem, as each has its own advantages.

It turns out that in both formulations constraint satisfaction can be
expressed as a database-theoretic problem. We start with the homomorphism
formulation, which is intimately related to conjunctive-query evaluation [48].
A conjunctive query Q of arity n is a query definable by a positive exis-
tential first-order formula ϕ(X1, . . . , Xn) that has conjunction as its only
propositional connective, that is, by a formula of the form

∃Z1 . . . ∃Zmψ(X1, . . . , Xn, Z1, . . . , Zm),

where ψ(X1, . . . , Xn, Z1, . . . , Zm) is a conjunction of (positive) atomic
formulas. The free variables X1, . . . , Xn of the defining formula are
called the distinguished variables of Q. Such a conjunctive query is usu-
ally written as a rule, whose head is Q(X1, . . . , Xn) and whose body is
ψ(X1, . . . , Xn, Z1, . . . , Zm). For example, the formula

∃Z1∃Z2(P (X1, Z1, Z2) ∧R(Z2, Z3) ∧R(Z3, X2))

defines a binary conjunctive query Q, which becomes, in the form of a rule,

Q(X1, X2) :- P (X1, Z1, Z2), R(Z2, Z3), R(Z3, X2).

If a formula defining a conjunctive query Q has no free variables (i.e., if it is a
sentence), then Q is a Boolean conjunctive query. For example, the sentence
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∃Z1∃Z2∃Z3(E(Z1, Z2) ∧ E(Z2, Z3) ∧ E(Z3, Z1))

defines the Boolean conjunctive query “is there a cycle of length 3?”.
If D is a database and Q is a n-ary query, then Q(D) is the n-ary relation

on D obtained by evaluating the query Q on D, that is, the collection of all
n-tuples from D that satisfy the query (see Chap. 2). The Conjunctive-

Query Evaluation problem asks: given a n-ary query Q, a database D, and
an n-tuple a from D, is a ∈ Q(D)? Let Q1 and Q2 be two n-ary queries that
have the same tuple of distinguished variables. We say that Q1 is contained
in Q2, and write Q1 ⊆ Q2, if Q1(D) ⊆ Q2(D) for every database D. The
Conjunctive-Query Containment problem asks: given two conjunctive
queries Q1 and Q2, is Q1 ⊆ Q2? These concepts can be defined for Boolean
conjunctive queries in an analogous manner. In particular, if Q is a Boolean
query and D is a database, then Q(D) = 1 if D satisfies Q; otherwise,
Q(D) = 0. Moreover, the containment problem for Boolean queries Q1 and
Q2 is equivalent to asking whether Q1 logically implies Q2.

It is well known that conjunctive-query containment can be reformulated
both as a Conjunctive-Query Evaluation problem and as a Homo-

morphism problem. What links these problems together is the canonical
database DQ associated with Q. This database is defined as follows. Each
variable occurring in Q is considered a distinct element in the universe
of DQ. Every predicate in the body of Q is a predicate of DQ as well;
moreover, for every distinguished variable Xi of Q, there is a distinct
monadic predicate Pi (not occurring in Q). Every subgoal in the body of
Q gives rise to a tuple in the corresponding predicate of DQ; moreover, if
Xi is a distinguished variable of Q, then Pi(Xi) is also a (monadic) tuple
of DQ. Thus, returning to the preceding example, the canonical database
of the conjunctive query ∃Z1∃Z2(P (X1, Z1, Z2) ∧ R(Z2, Z3) ∧ R(Z3, X2))
consists of the facts P (X1, Z1, Z2), R(Z2, Z3), R(Z3, X2), P1(X1), P2(X2).
The relationship between conjunctive-query containment, conjunctive-query
evaluation, and homomorphisms is provided by the following classical result,
due to Chandra and Merlin.

Theorem 6.2.1. [11] Let Q1 and Q2 be two conjunctive queries that have the
same tuple (X1, . . . , Xn) of distinguished variables. The following statements
are then equivalent:

• Q1 ⊆ Q2.
• (X1, . . . , Xn) ∈ Q2(DQ1).
• There is a homomorphism h : DQ2 → DQ1 .

It follows that the Homomorphism problem can be viewed as a
Conjunctive-Query Evaluation problem or as a Conjunctive-Query

Containment problem. For this purpose, for a structure A, we view the
universe A = {X1, . . . , Xn} of A as a set of individual variables and associate
with A the Boolean conjunctive query ∃X1 . . .∃Xn ∧t∈RA R(t); we call this
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query the canonical conjunctive query of A and denote it by QA. It is clear
that A is isomorphic to the canonical database associated with QA.

Corollary 6.2.2. Let A and B be two structures over the same vocabulary.
The following statements are then equivalent:

• A→ B.
• B |= QA.
• QB ⊆ QA.

As an illustration, we have that a graph G is 3-colorable iff K3 |= QG iff
QK3 ⊆ QG.

A relational join, denoted by the symbol �, is a conjunctive query
with no existentially quantified variables. Thus, relational-join evalu-
ation is a special case of conjunctive-query evaluation. For example,
E(Z1, Z2)∧E(Z2, Z3)∧E(Z3, Z1) is a relational join that, when evaluated on
a graph G = (V,E), returns all triples of nodes forming a 3-cycle. There is a
well-known connection between the traditional AI formulation of constraint
satisfaction and the formulation in terms of relational-join evaluation that we
describe next. Suppose we are given a Constraint-Satisfaction instance
(V,D, C). We can assume without loss of generality that, in every constraint
(t, R) ∈ C, the elements in t are distinct. (Suppose to the contrary that
ti = tj . Then we can delete from R every tuple in which the ith and jth
entries disagree, and then project out that j-th column from t and R.) We can
thus view every element of V as a relational attribute, every tuple of distinct
elements of V as a relational schema, and every constraint (t, R) as a relation
R over the schema t (see [1]). It now follows from the definition of constraint
satisfaction that CSP can be viewed as a relational-join evaluation problem.

Proposition 6.2.3. [6, 42] A constraint-satisfaction instance (V,D, C) is
solvable if and only if �(t,R)∈C R is nonempty.

Note that Proposition 6.2.3 is essentially the same as Corollary 6.2.2.
Indeed, the condition B |= QA amounts to the nonemptiness of the relational
join obtained from QA by dropping all existential quantifiers and using the
relations from B as interpretations of the relational symbols in QA. Moreover,
the homomorphisms from A to B are precisely the tuples in the relational
join associated with the constraint-satisfaction instance CSP(A,B).

6.3 The Computational Complexity
of Constraint Satisfaction

The Constraint-Satisfaction problem is NP-complete, because it is
clearly in NP and also contains NP-hard problems as special cases, including
3-Sat, 3-Colorability, and Clique. As explained in Garey and Johnson’s



6.3 The Computational Complexity of Constraint Satisfaction 345

classic monograph [36], one of the main ways to cope with NP-completeness
is to identify polynomial-time solvable cases of the problem at hand that
are obtained by imposing restrictions on the possible inputs. For instance,
Horn 3-Sat, the restriction of 3-Sat to Horn 3CNF-formulas, is solvable in
polynomial-time using a unit-propagation algorithm. Similarly, it is known
that 3-Colorability restricted to graphs of bounded treewidth is solvable
in polynomial time (see [26]). In the case of constraint satisfaction, the
pursuit of tractable cases has evolved over the years from the discovery of
isolated cases to the discovery of large “islands of tractability” of constraint
satisfaction. In what follows, we give an account of some of the progress made
in this area. Using the fact that the Constraint-Satisfaction problem
can be identified with the Homomorphism problem, we begin by introducing
some terminology and notation that will enable us to formalize the concept
of an “island of tractability” of constraint satisfaction.

In general, an instance of the Homomorphism problem consists of two
relational structures A and B. Thus, all restricted cases of this problem can
be obtained by imposing restrictions on the input structures A and B.

Definition 6.3.1. Let A, B be two classes of relational structures. We write
CSP(A,B) to denote the restriction of the Homomorphism problem to input
structures from A and B. In other words,

CSP(A,B) = {(A,B) : A ∈ A, B ∈ B and A→ B}.

An island of tractability of constraint satisfaction is a pair (A,B) of
classes of relational structures such that CSP(A,B) is in the complexity class
PTIME of all decision problems solvable in polynomial time.

(A more general definition of islands of tractability of constraint satisfaction
would consider classes of pairs (A,B) of structures, see [28]. We do not
pursue this more general definition here.)

The ultimate goal in the pursuit of islands of tractability of constraint
satisfaction is to identify or characterize classes A and B of relational
structures such that CSP(A,B) is in PTIME. The basic starting point in
this investigation is to consider the cases in which one of the two classes
A, B is as small as possible, while the other is as large as possible. This
amounts to considering the cases in which one of A, B is the class All of all
relational structures over some arbitrary, but fixed, relational vocabulary,
while the other is a singleton, consisting of some fixed structure over that
vocabulary. Thus, the starting point of the investigation is to determine, for
fixed relational structures A,B, the computational complexity of the decision
problems CSP({A}, All) and CSP(All, {B}).

Clearly, for each fixed A, the decision problem CSP({A}, All) can be
solved in polynomial time, because, given a structure B, the existence of a
homomorphism from A to B can be checked by testing all functions h from
the universe A of A to the universe B of B (the total number of such functions
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is |B||A|, which is a polynomial number in the size of the structure B when A
is fixed). Thus, having a singleton structure “on the left’ is of little interest.

At the other extreme, however, the situation is quite different, since the
computational complexity of CSP(All, {B}) may very well depend on the
particular structure B. Indeed, CSP(All, {K3}) is NP-complete, because it is
the 3-Colorability problem; in contrast, CSP(All, {K2}) is in P, because
it is the 2-Colorability problem. For simplicity, in what follows, for every
fixed structure B, we define CSP(B) = CSP(All, {B}) and call this the
nonuniform Constraint-Satisfaction problem associated with B. For
such problems, we refer to B as the template. Thus, the first major goal in
the study of the computational complexity of constraint satisfaction is to
identify those templates B for which CSP(B) is in PTIME. This goal gives
rise to an important open decision problem:
The Tractability-Classification problem: Given a relational structure
B, decide whether CSP(B) is in PTIME.

In addition to the family of nonuniform constraint-satisfaction problems
CSP(B), where B is a relational structure, we also study decision problems
of the form CSP(A, All), where A is a class of structures. We refer to such
problems as uniform Constraint-Satisfaction problems.

It is illuminating to consider the complexity of uniform and nonuniform
constraint satisfaction from the perspective of query evaluation. As argued
in [67] (see Chap. 2), there are three ways to measure the complexity of
evaluating queries (we focus here on Boolean queries) expressible in a query
language L:

• The combined complexity of L is the complexity of the following decision
problem: given an L-query Q and a structure A, does A |= Q? In symbols,

{〈Q,A〉 : Q ∈ L and A |= Q}.

• The expression complexity of L is the complexity of the following decision
problems, one for each fixed structure A:

{Q : Q ∈ L and A |= Q}.

• The data complexity of L is the complexity of the following decision
problems, one for each fixed query Q ∈ L:

{A : A |= Q}.

As discussed in Chap. 2, the data complexity of first-order logic is in
LOGSPACE, which means that, for each first-order query Q, the problem
{A : A |= Q} is in LOGSPACE. In contrast, the combined complexity for
first-order logic is PSPACE-complete. Furthermore, the expression complex-
ity for first-order logic is also PSPACE-complete. In fact, for all but trivial
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structures A, the problem {Q : Q ∈ FO and A |= Q} is PSPACE-complete.
This exponential gap between data complexity, on one hand, and combined
and expression complexity, on the other hand, is typical [67]. For conjunctive
queries, on the other hand, both the combined complexity and the expression
complexity are NP-complete.

Consider now the uniform constraint-satisfaction problem CSP(A, All) =
{(A,B) : A ∈ A, and A → B}, where A is a class of structures. By
Corollary 6.2.2, we have that

CSP(A, All) = {(A,B) : A ∈ A, B is a structure and B |= QA}.

Thus, studying the complexity of uniform constraint satisfaction amounts
to studying the combined complexity for a class of conjunctive queries, as
considered, for example, in [12, 39, 62]. In contrast, consider the nonuniform
Constraint-Satisfaction problem CSP(B) = {A : A → B}. By Corol-
lary 6.2.2, we have that CSP(B) = {A : B |= QA}. Thus, studying the com-
plexity of nonuniform constraint satisfaction amounts to studying the expres-
sion complexity of conjunctive queries with respect to different structures.
This is a problem that has not been studied in the context of database theory.

6.4 Nonuniform Constraint Satisfaction

The first major result in the study of nonuniform constraint-satisfaction
problems was obtained by Schaefer [63], who, in effect, classified the com-
putational complexity of all Boolean nonuniform constraint-satisfaction
problems. A Boolean structure is simply a relational structure with a
2-element universe, that is, a structure of the form B = ({0, 1}, RB

1 , . . . , R
B
m).

A Boolean nonuniform constraint-satisfaction problem is a problem of the
form CSP(B) with a Boolean template B. These problems are also known as
Generalized-Satisfiability problems, because they can be viewed as vari-
ants of Boolean-satisfiability problems in which the formulas are conjunctions
of generalized connectives [36]. In particular, they contain the well-known
problems k-Sat, k ≥ 2, 1-in-3-Sat, Positive 1-in-3-Sat, Not-All-Equal

3-Sat, and Monotone 3-Sat as special cases. For example, as seen earlier,
3-Sat is CSP(B), where B = ({0, 1}, R0, R1, R2, R3) and Ri is the set of
all triples that satisfy a 3-clause in which the first i literals are negated, for
i = 0, 1, 2, 3 (thus, R0 = {0, 1}3 − {(0, 0, 0)}). Similarly, Monotone 3-Sat

is CSP(B), where B = ({0, 1}, R0, R3).
Ladner [51] showed that if PTIME �= NP, then there are decision problems

in NP that neither are NP-complete nor belong to PTIME. Such problems
are called intermediate problems. Consequently, it is conceivable that a given
family of NP-problems contains intermediate problems. Schaefer [63], how-
ever, showed that the family of all Boolean nonuniform constraint-satisfaction
problems contains no intermediate problems.
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Theorem 6.4.1. (Schaefer’s Dichotomy Theorem [63])

• If B = ({0, 1}, RB
1 , . . . , R

B
m) is a Boolean structure, then either CSP(B)

is in PTIME or CSP(B) is NP-complete.
• The Tractability-Classification problem for Boolean structures is

decidable; in fact, there is a polynomial-time algorithm to decide, given a
Boolean structure B, whether CSP(B) is in PTIME or is NP-complete.

Schaefer’s Dichotomy Theorem can be described pictorially as in Fig. 6.1.
Schaefer [63] actually showed that there are exactly six types of Boolean

structures such that CSP(B) is in PTIME, and provided explicit descriptions
of them. Specifically, he showed that CSP(B) is in PTIME precisely when at
least one of the following six conditions is satisfied:

• Every relation RB
i , 1 ≤ i ≤ m, of B is 0-valid, that is, RB

i contains the
all-zeros tuple (0, . . . , 0).

• Every relation RB
i , 1 ≤ i ≤ m, of B is 1-valid, that is, RB

i contains the
all-ones tuple (1, . . . , 1).

• Every relation RB
i , 1 ≤ i ≤ m, of B is bijunctive, that is, RB

i is the set of
truth assignments satisfying some 2-CNF formula.

• Every relation RB
i , 1 ≤ i ≤ m, of B is Horn, that is, RB

i is the set of
truth assignments satisfying some Horn formula.

• Every relation RB
i , 1 ≤ i ≤ m, of B is dual Horn, that is, RB

i is the set
of truth assignments satisfying some dual Horn formula.

• Every relation RB
i , 1 ≤ i ≤ m, of B is affine, that is, RB

i is the set of
solutions to a system of linear equations over the two-element field.

Schaefer’s Dichotomy Theorem established a dichotomy and a decidable
classification of the complexity of CSP(B) for Boolean templates B. After
that result, Hell and Nešetřil [43] established a dichotomy theorem for CSP(B)
problems in which the template B is an undirected graph: if B is bipartite, then
CSP(B) is solvable in polynomial time; otherwise, CSP(B) is NP-complete. To
illustrate this dichotomy theorem, let Cn, n ≥ 3, be a cycle with n elements.
Then CSP(Cn) is in PTIME if n is even, and is NP-complete if n is odd.

↗ NP-complete

CSP(B) NP − PTIME, not NP-complete

↘ P

Fig. 6.1. Dichotomy Theorem
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The preceding two dichotomy results raise the challenge of classifying the
computational complexity of CSP(B) for arbitrary relational templates B.
Addressing this question, Feder and Vardi formulated the following conjecture.

Conjecture 6.4.2. (Dichotomy Conjecture [29]) If B = (B,RB
1 , . . . , RB

m)
is an arbitrary relational structure, then either CSP(B) is in PTIME or
CSP(B) is NP-complete.

In other words, the Dichotomy Conjecture says that the picture above
describes the complexity of nonuniform constraint-satisfaction problems
CSP(B) for arbitrary structures B. The basis for the conjecture is not only
the evidence from Boolean constraint satisfaction and undirected constraint
satisfaction, but also from our seeming inability to carry out the diagonaliza-
tion argument of [51] using the constraint-satisfaction machinery [27].

The Dichotomy Conjecture inspired intensive research efforts that
significantly advanced our understanding of the complexity of nonuniform
constraint satisfaction. In particular, Bulatov confirmed two important
cases of this conjecture. We say that a structure B = (B,RB

1 , . . . , RB
m) is a

3-element structure if B contains at most three elements. We say that B is
conservative if all possible monadic relations on the universe are included,
that is, every nonempty subset of B is one of the relations RB

i of B.

Theorem 6.4.3. [8, 9] If B a 3-element structure or a conservative struc-
ture, then either CSP(B) is in PTIME or CSP(B) is NP-complete. Moreover,
in both cases the Tractability-Classification problem is decidable in
polynomial time.

In spite of the progress made, the Dichotomy Conjecture remains unre-
solved in general. The research efforts towards this conjecture, however, have
also resulted in the discovery of broad sufficient conditions for tractability
and intractability of nonuniform constraint satisfaction that have provided
unifying explanations for numerous seemingly disparate tractability and
intractability results, and have also led to the discovery of new islands
of tractability of CSP(B). These broad sufficient conditions are based on
concepts and techniques from two different areas: universal algebra and logic.

The approach via universal algebra yields sufficient conditions for
tractability of CSP(B) in terms of closure properties of the relations in B
under certain functions on its universe B. Let R be a n-ary relation on a set
B and let f : Bk → B a k-ary function. We say that R is closed under f , if
whenever t1 = (t11, t21, . . . , tn1 ), . . . , tk = (t1k, t

2
k, . . . , t

n
k ) are k (not necessarily

distinct) tuples in R, then the tuple

(f(t11, . . . , t
1
k), f(t21, . . . , t

2
k), . . . , f(tn1 , . . . , t

n
k ))

is also in R. We say that f : Bk → B is a polymorphism of a structure
B = (B,R1, . . . , Rm) if each of the relations Rj , 1 ≤ j ≤ m, is closed under
f . It is easy to see that f is a polymorphism of B if and only if f is a
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homomorphism from Bk to B, where Bk is the kth power of B. By definition,
the kth power Bk is the structure (Bk, R′

1 . . . , R
′
m) over the same vocabulary

as B with universe Bk and relations R′
j , 1 ≤ j ≤ m, defined as follows: if

Rj is of arity n, then R′
j(s1, . . . , sn) holds in Bk if and only if Rj(si1, . . . , s

i
n)

holds in B for 1 ≤ i ≤ n.
We write Pol(B) for the set of all polymorphisms of B. As it turns out,

the complexity of CSP(B) is intimately connected to the kinds of functions
that Pol(B) contains. This connection was first unveiled in [29], and explored
in depth by Jeavons and his collaborators; for a recent survey, see [10].
In particular, they showed that if Pol(B1) = Pol(B2) for two structures
B1 and B2 (over finite vocabularies), then CSP(B1) and CSP(B2) are
polynomially reducible to each other. Thus, the polymorphisms of a template
B characterize the complexity of CSP(B). The above-mentioned dichotomy
results for 3-element and conservative constraint satisfaction are based on a
rather deep analysis of the appropriate sets of polymorphisms.

6.5 Monotone Monadic SNP and Nonuniform
Constraint Satisfaction

We discussed earlier how nonuniform constraint satisfaction is related to the
study of the expression complexity of conjunctive queries. We now show that
it can also be viewed as the study of the data complexity of second-order
logic. This will suggest a way to identify islands of tractability via logic.

As described in Chaps. 2 and 3, existential second-order logic (ESO)
defines, by Fagin’s Theorem, precisely the complexity class NP. The class
SNP (for strict NP) [46, 57] is a fragment of ESO, consisting of all existential
second-order sentences with a universal first-order part, namely sentences of
the form (∃S′)(∀x)Φ(x, S, S′), where Φ is a first-order quantifier-free formula.
We refer to the relations over the input vocabulary S as input relations and
to the relations over the quantified vocabulary S′ as existential relations.
3-Sat is an example of an SNP problem. The input structure consists of four
ternary relations C0, C1, C2, C3, on the universe {0, 1}, where Ci corresponds
to a clause with three variables, with the first i of them negated. There is
a single existential monadic relation T describing a truth assignment. The
condition that must be satisfied states that for all x1, x2, x3, if C0(x1, x2, x3)
then T (x1) or T (x2) or T (x3), and similarly for the remaining Ci by negating
T (xj) if j ≤ i. Formally, we can express 3-Sat with the SNP sentence

(∃T )(∀x1, x2, x3) ((C0(x1, x2, x3) → T (x1) ∨ T (x2) ∨ T (x3))∧
(C1(x1, x2, x3) → ¬T (x1) ∨ T (x2) ∨ T (x3))∧
(C2(x1, x2, x3) → ¬T (x1) ∨ ¬T (x2) ∨ T (x3))∧
(C3(x1, x2, x3) → ¬T (x1) ∨ ¬T (x2) ∨ ¬T (x3))).

It is easy to see that CSP(B) is in SNP for each structure B. For each ele-
ment a in the universe of B, we introduce an existentially quantified monadic
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relation Ta; intuitively, Ta(x) indicates that a variable x has been assigned a
value a by the homomorphism. The sentence ϕB says that the sets Ta cover
all elements in the universe,3 and that the tuples in the input relations satisfy
the constraints imposed by the structure B. Thus, if R(a1, . . . , an) does not
hold in B, then ϕB contains the conjunct ¬(R(x1, . . . , xn)∧

∧n
i=1 Tai(xi)). For

example, 3-Colorability over a binary input relation E can be expressed
by the sentence

(∃C1, C2, C3)(∀x, y) ((C1(x) ∨ C2(x) ∨ C3(x))∧
¬(E(x, y) ∧C1(x) ∧ C1(y))∧
¬(E(x, y) ∧C2(x) ∧ C2(y))∧
¬(E(x, y) ∧C3(x) ∧ C3(y))).

It follows that CSP(B) = {A : A |= ϕB}. Thus, the study of the complexity
of nonuniform constraint satisfaction can be viewed as the study of the data
complexity of certain SNP sentences.

A close examination of ϕB above shows that it actually resides in a syn-
tactic fragment of SNP. For monotone SNP, we require that all occurrences
of an input relation Ci in Φ have the same polarity (the polarity of a relation
is positive if it is contained in an even number of subformulas with a negation
applied to it, and it is negative otherwise); by convention, we assume that
this polarity is negative, so that the Ci can be interpreted as constraints, in
the sense that imposing Ci on more elements of the input structure can only
make the instance “less satisfiable”. For monadic SNP, we require that the
existential structure S′ consist of monadic relations only. Normally we assume
that the language contains also the equality relation, so both equalities and
inequalities are allowed in Φ, unless we say without inequality, which means
that the �= relation cannot be used (note that equalities can always be
eliminated here). We refer to the class in which all restrictions hold, that is,
monotone monadic SNP without inequality, as MMSNP. It is clear then that
nonuniform constraint satisfaction can be expressed in MMSNP.

What is the precise relationship between nonuniform constraint satisfac-
tion and MMSNP? It is easy to see that MMSNP is more expressive than
nonuniform constraint satisfaction. The property asserting that the input
graph is triangle-free is clearly in MMSNP (in fact, it can be expressed by
a universal first-order sentence), but it can be easily shown that there is no
graph G such that CSP(G) consists of all triangle-free graphs [29]. From a
computational point of view, however, MMSNP and nonuniform constraint
satisfaction turn out to be equivalent.

Theorem 6.5.1. [29] Every problem in MMSNP is polynomially equivalent
to CSP(B) for some template B. The equivalence is obtained by a randomized
Turing reduction4 from CSP to MMSNP and by a deterministic Karp
reduction from MMSNP to CSP.
3 It is not necessary to require disjointness.
4 G. Kun has recently announced a derandomization of this reduction.
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An immediate corollary is that the Dichotomy Conjecture holds for CSP
if and only if it holds for MMSNP. At the same time, MMSNP seems to
be a maximal class with this property. Specifically, any attempt to relax
the syntactical restrictions of MMSNP yields a class that is polynomially
equivalent to NP, and, consequently, a class for which the dichotomy fails.

Theorem 6.5.2. [29]

• Every problem in NP has a polynomially equivalent problem in monotone
monadic SNP with inequality.

• Every problem in NP has a polynomially equivalent problem in monadic
SNP without inequality.

• Every problem in NP has a polynomially equivalent problem in monotone
SNP without inequality.

By Ladner’s Theorem, it follows that if PTIME �= NP, then there are
intermediate problems, which are neither in PTIME nor NP-complete, in each
of monotone monadic SNP with inequality, monadic SNP without inequality,
and monotone SNP without inequality. This is the sense in which MMSNP
is a maximal class for which we would expect a dichotomy theorem to hold.

The fact that each constraint-satisfaction problem CSP(B) can be
expressed by the MMSNP sentence ϕB suggests a way to identify templates
B for which CSP(B) is tractable: characterize those templates B for which
ϕB is equivalent to a sentence in a logic whose data complexity is in PTIME.
We discuss this approach in the next section.

6.6 Datalog and Nonuniform Constraint Satisfaction

Consider all tractable problems of the form CSP(B). In principle, it
is conceivable that every such problem requires a completely different
algorithm. In practice, however, there seem to be two basic algorithmic
approaches for solving tractable constraint-satisfaction problems: one
based on a logical framework and one based on an algebraic framework.5

Feder and Vardi [29] conjectured that these two algorithmic approaches
cover all tractable constraint-satisfaction problems. Their group-theoretic
approach, which extended the algorithm used to solve affine Boolean
constraint-satisfaction problems [63], has been subsumed recently by a
universal-algebraic approach [8, 9]. We discuss the logical approach here.

As described in Chap. 2, a Datalog program is a finite set of rules of the
form t0 :- t1, . . . , tm, where each ti is an atomic formula R(x1, . . . , xn). The
relational predicates that occur in the heads of the rules are the intensional
database predicates (IDBs), while all the others are the extensional database

5 The two approaches, however, are not always cleanly separated; in fact, they can
be fruitfully combined to yield new tractable classes; see [17].
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predicates (EDBs). One of the IDBs is designated as the goal of the program.
Note that IDBs may occur in the bodies of rules and, thus, a Datalog
program is a recursive specification of the IDBs with a semantics obtained
via least fixedpoints of monotone operators. Each Datalog program defines
a query which, given a set of EDB predicates, returns the value of the goal
predicate. Moreover, this query is computable in polynomial time, since
the bottom-up evaluation of the least fixedpoint of the program terminates
within a polynomial number of steps (in the size of the given EDBs). It
follows that Datalog has data complexity in PTIME. Thus, expressibility
in Datalog is a sufficient condition for tractability of a query. This suggests
trying to identify those templates B for which the MMSNP sentence ϕB is
equivalent to a Boolean Datalog query.

It should be noted, however, that Datalog queries are preserved under
homomorphisms. This means that if A →h A′ and t ∈ P (A) for a Datalog
program M with goal predicate P , then h(t) ∈ P (A′). In contrast, constraint-
satisfaction problems are not preserved under homomorphisms, though their
complements are. If B is a relational structure, then we write CSP(B) for
the complement of CSP(B), that is, the class of all structures A such that
there is no homomorphism h : A → B. If A →h A′ and A ∈ CSP(B), then
it does not follow that A′ ∈ CSP(B). On the other hand, if A →h A′ and
A ∈ CSP(B), then A′ ∈ CSP(B), since homomorphisms compose. Thus,
rather then try to identify those templates B for which ϕB is equivalent to
a Boolean Datalog query, we try to identify those templates B for which the
negated sentence ¬ϕB is equivalent to a Boolean Datalog query.

Along this line of investigation, Feder and Vardi [29] provided a unifying
explanation for the tractability of many nonuniform CSP(B) problems by
showing that the complement of each of these problems is expressible in
Datalog. It should be pointed out, however, that Datalog does not cover all
tractable constraint-satisfaction problems. For example, it was shown in [29]
that Datalog cannot express the complement of affine Boolean constraint-
satisfaction problems; see also [5]. Affine Boolean constraint-satisfaction
problems and their generalizations require algebraic techniques to establish
their tractability [8, 29]).

For every positive integer k, let k-Datalog be the collection of all Datalog
programs in which the body of every rule has at most k distinct variables
and also the head of every rule has at most k variables (the variables of
the body may be different from the variables of the head). For example, the
query Non-2-Colorability is expressible in 3-Datalog, since it is definable
by the goal predicate Q of the following Datalog program, which asserts that
a cycle of odd length exists:

P1(X,Y ) : − E(X,Y )
P0(X,Y ) : − P1(X,Z), E(Z, Y )
P1(X,Y ) : − P0(X,Z), E(Z, Y )

Q : − P1(X,X).
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The fact that expressibility in Datalog and, more specifically, expressibil-
ity in k-Datalog provide sufficient conditions for tractability gives rise to two
classification problems:

• The k-Datalog-Classification problem: Given a relational structure
B and k > 1, decide whether CSP(B) is expressible in k-Datalog?

• The Datalog-Classification problem: Given a relational structure B,
decide whether CSP(B) is expressible in k-Datalog for some k > 1.

The universal-algebraic approach does offer some sufficient conditions
for CSP(B) to be expressible in Datalog. We mention two examples here.
A k-ary function f : Bk → B with k ≥ 3 is a near-unanimity function if
f(a1, . . . , ak) = b, for every k-tuple (a1, . . . , ak) such that at least k − 1 of
the ai’s are equal to b. Note that the ternary majority function from {0, 1}3
to {0, 1} is a near-unanimity function.

Theorem 6.6.1. [29] Let B be relational structure, and let k ≥ 3. If Pol(B)
contains a k-ary near-unanimity function, then CSP(B) is expressible in
k-Datalog.

Since the number of k-ary functions over the universe B of B is finite,
checking the condition of the preceding theorem for a given k is clearly
decidable. It is not known, however, whether it is decidable to check, given
B, whether Pol(B) contains a k-ary near-unanimity function for some k.

One special class of Datalog consists of those programs whose IDB
predicates are all monadic. We refer to such Datalog programs as monadic
Datalog programs. It can easily be seen that the Horn case of Boolean
constraint satisfaction can be dealt with by monadic programs. Consider, for
example, a Boolean template with three relations: H1 is a monadic relation
corresponding to positive Horn clauses (“facts”), H2 is a ternary relation
corresponding to Horn clauses of the form p ∧ q → r, and H3 is a ternary
relation corresponding to negative Horn clauses of the form ¬p ∨ ¬q ∨ ¬r.
Unsatisfiability of Horn formulas with at most three literals per clause can
then be expressed by the following monadic Datalog program:

H(X) : − H1(X)
H(X) : − H(X), H2(Y, Z,X)

Q : − H(X), H(Y ), H(Z), H2(X,Y, Z)

It turns out that we can fully characterize expressibility in monadic
Datalog. A k-ary function f is a set function if f(a1, . . . , ak) = f(b1, . . . , bk)
whenever {a1, . . . , ak} = {b1, . . . , bk}. In other words, a set function depends
only the set of its arguments. As a concrete example, the binary Boolean
functions ∧ and ∨ are set functions.

Theorem 6.6.2. [29] Let B be relational structure with universe B. The
following two statements are then equivalent:
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• CSP(B) is expressible in monadic Datalog.
• Pol(B) contains a |B|-ary set function.

Since the number of |B|-ary functions over the universe B of B is finite,
checking the condition of the theorem is clearly decidable; in fact, it is in NEX-
PTIME. Thus, the classification problem for monadic Datalog is decidable.

The main reason for the focus on Datalog as a language to solve
constraint-satisfaction problems is that its data complexity is in PTIME.
Datalog, however, is not the only logic with this property. We know, for
example, that the data complexity of first-order logic is in LOGSPACE.
Thus, it would be interesting to characterize the templates B such that
CSP(B) is expressible in first-order logic. This turns out to have an intimate
connection to expressibility in (nonrecursive) Datalog.

Theorem 6.6.3. [5, 60] Let B be a relational structure. The following are
equivalent:

• CSP(B) is expressible in first-order logic.
• CSP(B) is expressible by a finite union of conjunctive queries.

It is known that a Datalog program is always equivalent to a (possibly
infinite) union of conjunctive queries. A Datalog program is bounded if it is
equivalent to a finite union of conjunctive queries [35]. It is known that a
Datalog program is bounded if and only if it is equivalent to a first-order
formula [2, 61]. Thus, expressibility of nonuniform CSP in first-order logic
is a special case of expressibility in Datalog. Concerning the classification
problem, Larose, Loten, and Tardif [52] have shown that there is an algorithm
to decide, given a structure B, whether CSP(B) is expressible in first-order
logic; actually, this problem turns out to be NP-complete.

In another direction, we may ask if there are constraint-satisfaction
problems that cannot be expressed by Datalog, but can be expressed in least
fixedpoint logic (LFP), whose data complexity is also in PTIME. This is an
open question. It was conjectured in [29] that if CSP(B) is expressible in
LFP, then it is also expressible in Datalog.

6.7 Datalog, Games, and Constraint Satisfaction

So far, we have focused on using Datalog to obtain tractability for nonuni-
form constraint satisfaction. Kolaitis and Vardi [48] showed how the logical
framework also provides a unifying explanation for the tractability of uniform
constraint-satisfaction problems. Note that, in general, tractability results
for the nonuniform case do not uniformize. Thus, tractability results for each
problem in a collection of nonuniform CSP(B) problems do not necessarily
yield a tractable case of the uniform Constraint-Satisfaction problem.
The reason is that both of the structures A and B are part of the input to
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the uniform Constraint-Satisfaction problem, and the running times of
the polynomial-time algorithms for CSP(B) may very well be exponential in
the size of B. We now leverage the intimate connection between Datalog and
pebble games to shed new light on expressibility in Datalog, and show how
tractability via k-Datalog does uniformize.

As discussed in Chap. 2, Datalog can be viewed as a fragment of least
fixedpoint logic (LFP); furthermore, on the class All of all finite structures,
LFP is subsumed by the finite-variable infinitary logic Lω∞ω =

⋃
k>0 Lk∞ω

(see Chap. 2). Here we are interested in the existential positive fragments of
∃Lk∞ω, where k s a positive integer, which are tailored for the study of Datalog

Theorem 6.7.1. [48] Let k be a positive integer. Every k-Datalog query
over finite structures is expressible in ∃Lk∞ω. Thus, k-Datalog ⊆ ∃Lk∞ω on
finite structures.

We make use here of the (∃, k)-pebble games discussed in Chap. 2. We
saw there that if k is a positive integer and Q is a Boolean query on a class
C of finite structures, then Q is expressible in ∃Lk∞ω on C iff for all A,B ∈ C
such that A |= Q and the Duplicator wins the (∃, k)-pebble game on A and
B, we have that B |= Q. The next theorem establishes a connection between
expressibility in k-Datalog and (∃, k)-pebble games. (A closely related, but
somewhat less precise, such connection was established in [29].) In what
follows, if A is a class of structures and B is a structure, we write CSP(A,B)
to denote the class of structures A such that A ∈ A and A→ B.

Theorem 6.7.2. [48] Let k be a positive integer, B a relational structure,
and A a class of relational structures such that B ∈ A. The following
statements are then equivalent:

• CSP(A,B) is expressible in k-Datalog on A.
• CSP(A,B) is expressible in ∃Lk∞ω on A.
• CSP(A,B) is equal to the class

{A ∈ A : The Spoiler wins the (∃, k)-pebble game on Aand B}.

Recall also from Chap. 2 that the query “Given two structures A and B,
does the Spoiler win the (∃, k)-pebble game on A and B?” is definable in
LFP; as a result, there is a polynomial-time (in fact, O(n2k)) algorithm that,
given two structures A and B, determines whether the Spoiler wins the
(∃, k)-pebble game on A and B.

By combining Theorem 6.7.2 with the results of Chap. 2, we obtain
the following uniform tractability result for classes of constraint-satisfaction
problems expressible in Datalog.

Theorem 6.7.3. [48] Let k be a positive integer, let A be a class of relational
structures, and let B = {B ∈ A : ¬CSP(A,B) is expressible in k-Datalog}.
Then the uniform Constraint-Satisfaction problem CSP(A,B) is solvable
in polynomial time. Moreover, the running time of the algorithm is O(n2k),
where n is the maximum of the sizes of the input structures A and B.
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Intuitively, if we consider the class of all templates B for which k-Datalog
solves CSP(B), then computing the winner in the existential k-pebble game
offers a uniform polynomial-time algorithm. That is, the algorithm deter-
mining the winner in the existential k-pebble game is a uniform algorithm
for all (nonuniform) constraint-satisfaction problems that can be expressed
in k-Datalog.

The characterization in terms of pebble games also sheds light on nonuni-
form constraint satisfaction. As described in Chap. 2, for every relational
structure B and every positive integer k, there is a k-Datalog program ρkB
that expresses the query “Given a structure A, does the Spoiler win the
(∃, k) pebble game on A and B?” As an immediate consequence of this fact,
we obtain the result that CSP(B) is expressible in k-Datalog if and only if it
is expressible by a specific k-Datalog program.

Theorem 6.7.4. [29, 48] CSP(B) is expressible in k-Datalog if and only if
it is expressible by ρkB.

It follows that CSP(B) is expressible in k-Datalog if and only if ¬ϕB

is logically equivalent to ρkB, where ϕB is the MMSNP sentence express-
ing CSP(B). Unfortunately, it is not known whether the equivalence of
complemented MMSNP to Datalog is decidable.

6.8 Games and Consistency

One of the most fruitful approaches to coping with the intractability of con-
straint satisfaction has been the introduction and use of various consistency
concepts that make explicit some additional constraints implied by the original
constraints. The connection between consistency properties and tractability
was first described in [31, 32]. In a similar vein, the relationship between local
consistency and global consistency was investigated in [21, 65, 66]. Intuitively,
local consistency means that any partial solution on a set of variables can
be extended to a partial solution containing an additional variable, whereas
global consistency means that any partial solution can be extended to a global
solution. Note that if the inputs are such that local consistency implies global
consistency, then there is a polynomial-time algorithm for constraint satisfac-
tion; moreover, in this case a solution can be constructed via a backtrack-free
search. We now describe this approach from the Datalog perspective. The
crucial insight is that the key concept of strong k-consistency [21] is equivalent
to a property of winning strategies for the Duplicator in the (∃, k)-pebble
game. Specifically, an instance of a constraint-satisfaction problem is strongly
k-consistent if and only if the family of all k-partial homomorphisms f is
a winning strategy for the Duplicator in the (∃, k)-pebble game on the two
relational structures that represent the given instance.
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The connection between pebble games and consistency properties, how-
ever, is deeper than just a mere reformulation of the concept of strong k-
consistency. Indeed, as mentioned earlier, consistency properties underlie the
process of making explicit new constraints that are implied by the original
constraints. A key technical step in this approach is the procedure known as
“establishing strong k-consistency”, which propagates the original constraints,
adds implied constraints, and transforms a given instance of a constraint-
satisfaction problem to a strongly k-consistent instance with the same solu-
tion space [15, 21]. In fact, strong k-consistency can be established if and only
if the Duplicator wins the (∃, k)-pebble game. Moreover, whenever strong
k-consistency can be established, one method for doing this is to first com-
pute the largest winning strategy for the Duplicator in the (∃, k)-pebble game
and then modify the original problem by augmenting it with the constraints
expressed by the largest winning strategy; this method gives rise to the least
constrained instance that establishes strong k-consistency and, in addition,
satisfies a natural coherence property. By combining this result with known
results concerning the definability of the largest winning strategy, it follows
that the algorithm for establishing strong k-consistency in this way (with k
fixed) is actually expressible in least fixedpoint logic; this strengthens the
fact that strong k-consistency can be established in polynomial time when
k is fixed. If we consider nonuniform constraint satisfaction, it follows that
for every relational structure B, the complement of CSP(B) is expressible
by a Datalog program with k variables if and only if CSP(B) coincides with
the collection of all relational structures A such that establishing strong k-
consistency on A and B implies that there is a homomorphism from A to B.

We start the formal treatment by returning first to (∃, k)-pebble games.
Recall from Chap. 2 that a winning strategy for the Duplicator in the (∃, k)-
pebble game on A and B is a nonempty family of k-partial homomorphisms
(that is, partial homomorphisms defined on at most k elements) from A to
B that is closed under subfunctions and has the forth property up to k. A
configuration for the (∃, k)-pebble game on A and B is a 2k-tuple a,b, where
a = (a1, . . . , ak) and b = (b1, . . . , bk) are elements of Ak and Bk, respectively,
such that if ai = aj , then bi = bj ; this means that the correspondence ai �→ bi,
1 ≤ i ≤ k, is a partial function from A to B, which we denote by ha,b. A
winning configuration for the Duplicator in the existential k-pebble game on
A and B is a configuration a,b for this game such that ha,b is a member
of some winning strategy for the Duplicator in this game. We denote by
Wk(A,B) the set of all such configurations. The following results show that
expressibility in ∃Lk∞ω can be characterized in terms of the set Wk(A,B).

Proposition 6.8.1. [49] If F and F ′ are two winning strategies for the
Duplicator in the (∃, k)-pebble game on two structures A and B, then the
union F ∪ F ′ is also a winning strategy for the Duplicator. Consequently,
there is a largest winning strategy for the Duplicator in the (∃, k)-pebble
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game, namely the union of all winning strategies, which is precisely the set
Hk(A,B) = {ha,b : (a, b) ∈ Wk(A,B)}.

Corollary 6.8.2. [48] Let k be a positive integer and Q a k-ary query on a
class C of finite structures. The following two statements are then equivalent:

• Q is expressible in ∃Lk∞ω on C.
• If A, B are two structures in C, (a,b) ∈ Wk(A,B), and A |= Q(a), then

B |= Q(b).

The following lemma is a crucial definability result.

Lemma 6.8.3. [48] There is a positive-in-S first-order formula ϕ(x, y, S),
where x and y are k-tuples of variables, such that the complement of its least
fixedpoint on a pair (A,B) of structures defines the set Wk(A,B) of all
winning configurations for the Duplicator in the (∃, k)-pebble game on A,B.

We now formally define the concepts of i-consistency and strong
k-consistency.

Definition 6.8.4. Let P = (V,D, C) be a constraint-satisfaction instance.

• A partial solution on a set V ′ ⊂ V is an assignment h : V ′ → D that
satisfies all the constraints whose scope is contained in V ′.

• P is i-consistent if, for every i− 1 variables v1, . . . , vi−1, for every partial
solution on these variables, and for every variable vi �∈ {v1, . . . , vi−1},
there is a partial solution on the variables v1, . . . , vi−1, vi extending the
given partial solution on the variables v1, . . . , vi−1.

• P is strongly k-consistent if it is i-consistent for every i ≤ k.

To illustrate these concepts, consider the Boolean formula

(¬x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ ¬x3).

It is easy to verify that this formula, viewed as a constraint-satisfaction
instance, is strongly 3-consistent. For instance, the partial solution x2 = 0,
x3 = 0 can be extended to the solution x1 = 0, x2 = 0, x3 = 0, and the
partial solution x1 = 1, x3 = 1 can be extended to the solution x1 = 1,
x2 = 1, x3 = 1. In contrast, the Boolean formula

(x1 ∨ x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x3) ∧ (x2 ∨ ¬x3)

is satisfiable and strongly 2-consistent, but not 3-consistent (hence, it is not
strongly 3-consistent either). The reason is that the partial solution x2 = 0,
x3 = 0 cannot be extended to a solution, since the only solutions of this for-
mula are x1 = 0, x2 = 1, x3 = 1 and x1 = 1, x2 = 1, x3 = 1. Note that the con-
cepts of strong 2-consistency and strong 3-consistency were first studied in the
literature under the names of arc consistency and path consistency (see [23]).

A key insight is that the concepts of i-consistency and strong k-consistency
can be naturally recast in terms of existential pebble games.
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Proposition 6.8.5. [49] Let P be a CSP instance, and let (AP ,BP) be the
associated homomorphism instance.

• P is i-consistent if and only if the family of all partial homomorphisms
from AP to BP with i − 1 elements in their universe has the i-forth
property.

• P is strongly k-consistent if and only if the family of all k-partial
homomorphisms from AP to BP is a winning strategy for the Duplicator
in the (∃, k)-pebble game on AP and BP .

Let us now recall the concept of establishing strong k-consistency, as
defined, for instance, in [15, 21]. This concept has been defined rather
informally in the AI literature to mean that, given a constraint-satisfaction
instance P , we associate with it another instance P ′ that has the following
properties: (1) P ′ has the same set of variables and the same set of values as
P (2) P ′ is strongly k-consistent; (3) P ′ is at least as constrained as P ; and
(4) P and P ′ have the same space of solutions. The next definition formalizes
the above concept in the context of the homomorphism problem (see [19, 49]).

Definition 6.8.6. Let A and B be two relational structures over a k-ary
vocabulary σ (i.e., every relation symbol in σ has an arity of at most k).
Establishing strong k-consistency for A and B means that we associate two
relational structures A′ and B′ with them with the following properties:

• A′ and B′ are structures over some k-ary vocabulary σ′ (in general,
different from σ); moreover, the universe of A′ is the universe A of A,
and the universe of B′ is the universe B of B.

• CSP(A′,B′) is strongly k-consistent.
• If h is a k-partial homomorphism from A′ to B′, then h is a k-partial

homomorphism from A to B.
• If h is a function from A to B, then h is a homomorphism from A to B

if and only if h is a homomorphism from A′ to B′.

If the structures A′ and B′ have the above properties, then we say that A′

and B′ establish strong k-consistency for A and B.

A constraint-satisfaction instance P is coherent if every constraint (t, R) of
P completely determines all constraints (u, Q) in which all variables occurring
in u are among the variables of t. We formalize this concept as follows.

Definition 6.8.7. An instance A,B of the homomorphism problem is coher-
ent if its associated constraint-satisfaction instance CSP(A,B) has the follow-
ing property: for every constraint (a, R) of CSP(A,B) and every tuple b ∈ R,
the mapping ha,b is well defined and is a partial homomorphism from A to B.

Note that a constraint-satisfaction instance can be made coherent in
polynomial time by constraint propagation.
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The main result of this section is that strong k-consistency can be
established precisely when the Duplicator wins the (∃, k)-pebble game. More-
over, one method for establishing strong k-consistency is to first compute
the largest winning strategy for the Duplicator in this game and then to
generate an instance of the constraint-satisfaction problem consisting of all
the constraints embodied in the largest winning strategy. Furthermore, this
method gives rise to the largest coherent instance that establishes strong
k-consistency (and, hence, the least constrained such instance).

Theorem 6.8.8. [49] Let k be a positive integer, let σ be a k-ary vocabulary,
and let A and B be two relational structures over σ with universes A and
B, respectively. It is possible to establish strong k-consistency for A and B if
and only if Wk(A,B) �= ∅. Furthermore, if Wk(A,B) �= ∅, then the following
sequence of steps gives rise to two structures A′ and B′ that establish strong
k-consistency for A and B:

1. Compute the set Wk(A,B).
2. For every i ≤ k and for every i-tuple a ∈ Ai, form the set

Ra = {b ∈ Bi : (a,b) ∈ Wk(A,B)}.
3. Form a Constraint-Satisfaction instance P with A as the set of

variables, B as the set of values, and {(a, Ra) : a ∈ ∪ki=1A
i} as the

collection of constraints.
4. Let (A′, B′) be the homomorphism instance of P.

In addition, the structures A′ and B′ obtained above constitute the largest
coherent instance establishing strong k-consistency for A and B, that is, if
(A′′,B′′) is another such coherent instance, then for every constraint (a, R)
of CSP(A′′,B′′), we have that R ⊆ Ra.

The key step in the procedure described in Theorem 6.8.8 is the first
step, in which the set Wk(A,B) is computed. The other steps simply
“re-format” Wk(A,B). From Lemma 6.8.3 it follows that we can establish
strong k-consistency by computing the fixedpoint of a monotone first-order
formula. We can now relate the concept of strong k-consistency to the results
in [29] regarding Datalog and nonuniform CSP.

Theorem 6.8.9. [49] Let B be a relational structure over a vocabulary σ.
The following two statements are then equivalent:

• CSP(B) is expressible in k-Datalog.
• For every structure A over σ, establishing strong k-consistency for A,B

implies that there is a homomorphism from A to B.

Given the fundamental role that the set Wk(A,B) plays here, it is natural
to ask about the complexity of computing it. To turn this question into a
decision problem, we just ask about the nonemptiness of this set.
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Theorem 6.8.10. [45] The problem {(A,B, k) : Wk(A,B) �= ∅}, with k
encoded in unary, is EXPTIME-complete. In words, the following problem is
EXPTIME-complete: given a positive integer k and two structures A and B,
does the Duplicator win the (∃, k)-pebble game on A and B?

This result is rather surprising. After all, the complexity of constraint
satisfaction is “only” NP-complete. In contrast, the complexity of establishing
strong k-consistency is provably exponential and not in PTIME. This offers
an a posteriori justification of the practice of establishing only a “low degree”
of consistency, such as arc consistency or path consistency [3, 23].

6.9 Uniform Constraint Satisfaction
and Bounded Treewidth

So far, we have focused on the pursuit of islands of tractability of nonuniform
constraint satisfaction, that is, islands of the form CSP(B) = CSP(All, {B}),
where B is a fixed template. Even when we discussed uniform constraint
satisfaction, it was with respect to tractable templates. In this section we
focus on uniform constraint satisfaction of the form CSP(A, All), where A
is a class of structures. The goal is to identify conditions on A that ensure
uniform tractability.

As is well known, many algorithmic problems that are “hard” on arbi-
trary structures become “easy” on trees. This phenomenon has motivated
researchers to investigate whether the concept of a tree can be appropriately
relaxed while maintaining good computational behavior. As part of their
seminal work on graph minors, Robertson and Seymour introduced the
concept of treewidth, which, intuitively, measures how “tree-like” a structure
is; moreover, they showed that graphs of bounded treewidth exhibit such good
behavior; see [59].

Definition 6.9.1. A tree decomposition of a relational structure A is a
labeled tree T such that the following conditions hold:

• Every node of T is labeled by a nonempty subset of the universe A of A,
• For every relation R of A and every tuple (a1, . . . , an) in R, there is a

node of T whose label contains {a1, . . . , an},
• For every a ∈ A, the set of nodes of T whose labels include a forms a

subtree of T .

The width of a tree decomposition T is the maximum cardinality of a label
of a node in T minus 1. The treewidth of A, denoted tw(A), is the smallest
positive integer k such that A has a tree decomposition of width k. We write
T (k) to denote the class of all structures A such that tw(A) < k.

Clearly, if T is a tree, then tw(T) = 1. Similarly, if n ≥ 3 and Cn is the
n-element (directed) cycle, then tw(C) = 2. At the other end of the scale,
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tw(Kk) = k−1, for every k ≥ 2. Computing the treewidth of a structure is an
intractable problem. Specifically, the following problem is NP-complete [4]:
given a graph H and an integer k ≥ 1, is tw(H) ≤ k? Nonetheless,
Bodlaender [7] has shown that for every fixed integer k ≥ 1, there is a linear-
time algorithm such that, given a structure A, it determines whether or not
tw(A) < k. In other words, each class T (k) is recognizable in polynomial time.

Dechter and Pearl [25] and Freuder [33] have shown that the classes of
structures of bounded treewidth give rise to large islands of tractability of
uniform constraint satisfaction.

Theorem 6.9.2. [25, 33] If k ≥ 2 is a positive integer, then CSP(T (k), All)
is in PTIME.

The polynomial-time algorithm for CSP(T (k), All) in the above theorem
is often described as a bucket-elimination algorithm [22]. It should be noted
that it is not a constraint-propagation algorithm. Instead, this algorithm
uses the bound on the treewidth to test whether a solution to the constraint-
satisfaction problem exists by solving a join-evaluation problem in which all
intermediate relations are of bounded arity.

Kolaitis and Vardi [48], and Dalmau, Kolaitis and Vardi [18] have
investigated certain logical aspects of the treewidth of a relational structure
and have shown that this combinatorial concept is closely connected to the
definability of the canonical conjunctive query of the structure in a fragment
of first-order logic with a fixed number of variables. This has made it possible
to show that the tractability of CSP(T (k), All) can be explained in purely
logical terms. Moreover, it led to the discovery of larger islands of tractability
of uniform constraint satisfaction.

Definition 6.9.3. Let k ≥ 2 be a positive integer.

• FOk is the collection of all first-order formulas with at most k distinct
variables.

• Lk is the collection of all FOk-formulas built using atomic formulas,
conjunction, and existential first-order quantification only.

Intuitively, queries expressible in FOk and Lk are simply first-order queries
and conjunctive queries, respectively, with a bound k on the number of distinct
variables (each variable, however, may be reused any number of times).

As an example, it is easy to see that if Cn is the n-element cycle, n ≥ 3,
then the canonical conjunctive query QCn is expressible in L3. For instance,
QC4 is logically equivalent to (∃x∃y∃z)(E(x, y) ∧ E(y, z) ∧ (∃y)(E(z, y) ∧
E(y, x))). As mentioned earlier, for every n ≥ 3, we have that tw(Cn) = 2.

The logics FOk and Lk are referred to as variable-confined logics [47].
The complexity of query evaluation for such queries has been studied in [68].
Since in the case of in data complexity the queries are fixed, bounding the
number of variables does not change the data complexity. The change in the
expression and the combined complexity, however, is quite dramatic, as the
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combined complexity of FOk has been shown to be in PTIME [68]. (More
generally, the exponential gap between data complexity and expression and
combined complexity shrinks when the number of variables is bounded.)

The next result shows that the relationship we have just seen in the
example above, between the treewidth and the number of variables needed
to express the canonical conjunctive query of a cycle, is not an accident.

Theorem 6.9.4. [48] Let k ≥ 2 be a positive integer. If A ∈ T (k), then the
canonical conjunctive query QA is expressible in Lk.

Corollary 6.9.5. CSP(T (k), All) can be solved in polynomial time by deter-
mining, given a structure A ∈ T (k) and an arbitrary structure B, whether
B |= QA.

A precise complexity analysis of CSP(T (k), All) is provided in [37], where
it is shown that the problem is LOGFCL-complete; by definition, LOGCFL
is the class of decision problems that are logspace-reducible to a context-free
language. Note that, in contrast, the combined complexity of evaluating
FOk-queries, for k > 3, is PTIME-complete [68].

Theorem 6.9.4 can be viewed as a logical recasting of the bucket-
elimination algorithm. It derives the tractability of CSP(T (k), All) from
the fact that the canonical conjunctive query QA can be written using at
most k variables. Consequently, evaluating this query amounts to solving a
join-evaluation problem in which all intermediate relations are of bounded
arity. For an investigation of how the ideas underlying Theorem 6.9.4 can be
used to solve practical join-evaluation problems, see [55].

It turns out, however, that we can also approach solving CSP(T (k), All)
from the perspective of k-Datalog and (∃, k)-pebble games. This is because
Lk is a fragment of ∃Lk∞ω, whose expressive power, as seen earlier, can be
characterized in terms of such games.

Theorem 6.9.6. [18] Let k ≥ 2 be a positive integer.

• If B is an arbitrary, but fixed, structure, then T (k) ∩ CSP(T (k), {B}) is
expressible in k-Datalog.6

• CSP(T (k), All) can be solved in polynomial time by determining whether,
given a structure A ∈ T (k) and an arbitrary structure B, the Duplicator
wins the (∃, k)-pebble on A and B.

The situation for bounded-treewidth structures, as described by Theo-
rem 6.9.6, should be contrasted with the situation for bounded-cliquewidth
structures [16]. Let C(k) be the class of structures with a cliquewidth bounded
by k. It has been shown in [16] that CSP(C(k), {B}) is in PTIME for each
structure B. Since, however, complete graphs have a bounded cliquewidth, it

6 The intersection with T (k) ensures that only structures with a treewidth bounded
by k are considered.
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follows that the Clique problem can be reduced to CSP(C(k), All), implying
NP-hardness of the latter.

As a consequence of Theorem 6.9.6, we see that CSP(T (k), All) can be
solved in polynomial time using a constraint-propagation algorithm that is
quite different from the bucket-elimination algorithm in Theorem 6.9.2. It
should be noted, however, that this requires knowing that we have been
given an instance A,B where tw(A) ≤ k. In contrast, the bucket-elimination
algorithm can be used for arbitrary constraint-satisfaction instances (with no
tractability guarantee, in general).

The classes CSP(T (k), All) enjoy also nice tractability properties from
the perspective of Parametrized Complexity Theory [26], as they are fixed-
parameter tractable, and, in a precise technical sense, are maximal with this
property under a certain complexity-theoretic assumption (see [41]).

The development so far shows that T (k) provides an island of tractability
for uniform constraint satisfaction. We now show that this island can be
expanded.

Definition 6.9.7. Let A and B be two relational structures.

• We say that A and B are homomorphically equivalent, denoted by
A ∼h B, if both A→ B and B→ A hold.

• We say that B is the core of A, and write core(A) = B, if B is a
substructure of A, A → B holds, and A → B′ fails for each proper
substructure B′ of B.

Clearly, core(Kk) = Kk and core(Cn) = Cn. On the other hand, if H
is a 2-colorable graph with at least one edge, then core(H) = K2. It should
be noted that cores play an important role in database query processing and
optimization (see [11]). The next result shows that they can also be used to
characterize when the canonical conjunctive query is definable in Lk.

Theorem 6.9.8. [18] Let k ≥ 2 be a positive integer and A a relational
structure. The following are then equivalent:

• QA is definable in Lk.
• There is a structure B ∈ T (k) such that A ∼h B.
• core(A) ∈ T (k).

The tight connection between definability in Lk and the boundedness of
the treewidth of the core suggests a way to expand the “island” T (k).

Definition 6.9.9. If k ≥ 2 is a positive integer, then H(T (k)) is the class of
relational structures A such that core(A) has a treewidth less than k.

It should be noted that T (k) is properly contained in H(T (k)), for every
k ≥ 2. Indeed, it is known that there are 2-colorable graphs of arbitrarily
large treewidth. In particular, grids are known to have these properties
(see [26]). Yet these graphs are members of H(T (2)), since their core is K2.
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Theorem 6.9.10. [18] Let k ≥ 2 be a positive integer.

• If B is an arbitrary, but fixed, structure, then H(T (k)) ∩
CSP(H(T (k)), {B}) is expressible in k-Datalog.

• CSP(H(T (k)), All) is in PTIME. Moreover, CSP(H(T (k)), All) can be
solved in polynomial time by determining whether, given a structure
A ∈ H(T (k)) and an arbitrary structure B, the Spoiler or the Duplicator
wins the (∃, k)-pebble on A and B.

Theorem 6.9.10 yields new islands of tractability for uniform constraint
satisfaction, which properly subsume the islands of tractability constituted by
the classes of structures of bounded treewidth. This expansion of the tractabil-
ity landscape comes, however, at a certain price. Specifically, as seen earlier,
for every fixed k ≥ 2, there is a polynomial-time algorithm for determining
membership in T (k) [7]. In contrast, it has been shown that, for every fixed
k ≥ 2, determining membership in H(T (k)) is an NP-complete problem [18].
Thus, these new islands of tractability are, in some sense, “inaccessible”.

Since H(T (k)) contains structures of arbitrarily large treewidth, the
bucket-elimination algorithm cannot be used to solve CSP(H(T (k)), All)
in polynomial time. Thus, Theorem 6.9.10 also shows that determining the
winner of the (∃, k)-pebble is a polynomial-time algorithm that applies to
islands of tractability not covered by the bucket-elimination algorithm.

It is now natural to ask whether there are classes A of relational structures
that are larger than the classes H(T (k)) such that CSP(A, All) is solvable
in polynomial time. A remarkable result by Grohe [40] shows essentially
that, if we fix the vocabulary, no such classes exist, provided a certain
complexity-theoretic hypothesis is true.

Theorem 6.9.11. [40] Assume that FPT �= W [1]. If A is a recursively
enumerable class of relational structures over some fixed vocabulary such
that CSP(A, All) is in PTIME, then there is a positive integer k such that
A ⊆ H(T (k)).

The hypothesis FPT �= W [1] is a statement in Parametrized Complexity
Theory that is analogous to the hypothesis PTIME �= NP, and it is widely
accepted as being true (see [26]). In effect, Theorem 6.9.11 is a converse
to Theorem 6.9.10 for fixed vocabularies. Together, these two theorems
yield a complete characterization of all islands of tractability of the form
CSP(A, All), where A is a class of structures over some fixed vocabulary.
Moreover, they reveal that all tractable cases of the form CSP(A, All) can
be solved by the same polynomial-time algorithm, namely, the algorithm
for determining the winner in the (∃, k)-pebble game. In other words, all
tractable cases of constraint satisfaction of the form CSP(A, All) can be
solved in polynomial time using constraint propagation.

It is important to emphasize that the classes H(T (k)) are the largest
islands of tractability for uniform constraint satisfaction only under the
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assumption in Theorem 6.9.11 of a fixed vocabulary. For variable vocabular-
ies, there has been a long line of research on the impact of the “topology” of
conjunctive queries on the complexity of their evaluation; this line of research
goes back to the study of acyclic joins in [69]. The connection between
acyclic joins and acyclic constraints was pointed out in [42]. This is still an
active research area. Chekuri and Rajaraman [12] showed that the uniform
constraint-satisfaction problem CSP(Q(k), All) is solvable in polynomial
time, where Q(k) is the class of structures of querywidth k. Gottlob, Leone,
and Scarcello [39] have defined another notion of width, called hypertree
width. They have shown that the querywidth of a structure A provides a
strict upper bound on the hypertree width of A, but that the class H(k) of
structures of hypertree width at most k is polynomially recognizable (unlike
the class Q(k)), and that CSP(H(k), All) is tractable. For further discussion
of the relative merits of various notions of “width”, see [38]. This is an active
area of research (see [13, 14]).
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7

Local Variations on a Loose Theme:
Modal Logic and Decidability

Maarten Marx and Yde Venema

7.1 Introduction

This chapter is about decidability and complexity issues in modal logic; more
specifically, we confine ourselves to satisfiability (and the complementary
validity) problems. The satisfiability problem is the following: for a fixed
class of models, to determine whether a given formula ϕ is satisfiable in some
model of that class (a more precise definition will follow). The general picture
is that modal logic behaves quite well in this respect. In fact, many authors
follow Vardi [58] in calling modal logic robustly decidable on the ground that
most of the nice computational properties of modal logic are preserved if one
considers extensions or variants of the basic system. The main aim of this
chapter is to refine and analyze this picture.

To start with, we should clarify what we are talking about when using
the term “modal logic”. Traditionally, propositional modal logic would be
described as an extension of propositional logic with operators � and � for
talking about the necessity and possibility of a formula being true. However,
nowadays the term “modal logic” is used for a plethora of formalisms, with
applications in various disciplines ranging from linguistics to economics,
see [11, 17, 39, 56] for a sample of applications in computer science.

And while (propositional) modal logics will usually still be an extension of
classical propositional logic with a number of modal operators, the intended
meanings of these operators differ enormously. For instance, the formula �aϕ
could mean “player a knows that ϕ is the case” in a formalization of game
theory, or “after the execution of program a, ϕ will be the case” in a formal
language for program verification. Fortunately, on a technical level, all these
formalisms still have a lot in common. That is why this chapter first introduces
the notion of a modal system as a triple consisting of a (propositional) modal
language, a class of models and a truth function. This definition covers most
of the systems that appear in the literature under the name “modal logic”; in
particular, the familiar system of basic modal logic, to be discussed in Sect. 7.3.
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Now that we know what modal logic is, can we say what makes it so
robustly decidable? If we confine ourselves to basic modal logic, the answer
seems to be affirmative. As we shall see further on, the fact that the truth
of basic modal formulas is invariant under bisimulations ensures that basic
modal logic has the tree model property. That is, every satisfiable modal
formula is satisfiable in a special, “loose”, model based on a tree. This makes
it much easier to check whether a given modal formula is satisfiable: one
only needs to worry about these loose models. And since the bisimulation
invariance property transfers to many extensions and variants of the basic
modal system, so does the decidability of the satisfiability problem.

This analysis, due to Vardi [58], in terms of a looseness principle, will form
the main theme of our chapter. However, it can only form part of the story.
For instance, suppose that we are interested not just in decidability, but also
in the computational complexity of the satisfiability problem. Not all loose
modal systems are in the same complexity class, so there must be principles
besides looseness that determine the computational behavior of a modal
system. Or, what if we happen to be working with a modal system that does
not allow trees as models? Will this necessarily make the logic undecidable?
Answers to such questions cannot be precise and general at the same time
— note that the problem of whether a given modal axiom determines a
decidable modal logic (“logic” here in the technical sense; see below), is
itself undecidable! Nevertheless, we believe that it is possible to provide
some rough guidelines, and we shall discuss some of these in this chapter; in
particular, at the end of Sect. 7.3, we discuss two locality principles.

Thus, it is our aim to act as the reader’s travel guide in the landscape
of modal logics by pointing out some interesting decidability and complexity
theoretic phenomena and by suggesting an interpretation of these phenomena
as local variations on a loose theme. On the trip we shall introduce some
important modal systems and proof methods — but we have not aimed for
a complete or systematic overview in this respect. (For instance, we shall not
employ any automata-theoretic methods.) No previous exposure of the reader
to modal logic is assumed. Finally, we do not usually provide credits or give
references in running text; these are supplied in the “Notes” paragraphs that
finish each section.

Overview of chapter In the next section we explain our interpretation of the
terms “modal logic” and “modal systems”, and we define the notion of bisim-
ulation. Section 7.3 discusses basic modal logic, giving a detailed proof of the
decidability of its satisfiability problem; analyzing this proof, we introduce the
notions of looseness and locality. In the section after that, we use a number of
examples to show what happens if we play around a bit with these principles.
Section 7.5 is devoted to a more fine-grained, complexity-theoretic study of the
modal satisfiability problem. In the last section, we show how one can use the
principles discussed in the earlier parts of the chapter to find large fragments
of ordinary first-order logic that have a decidable satisfiability problem.
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7.2 Modal Systems and Bisimulations

In this section, we discuss our interpretation of the term “modal logic” by
defining and explaining the notion of a modal system. We also introduce the
fundamental notion of similarity between two modal models, namely that of
a bisimulation. The link between modal logic and bisimulation is that modal
formulas cannot distinguish bisimilar points.

Modal Systems

A modal system consists of a modal language L, a class of models K, and a
function � interpreting formulas of the language in the models. As models,
we shall consider only relational structures, that is, structures consisting of
a nonempty domain or universe together with a number of relations on it.
By the size of a model M, we always denote the size of its domain. The
elements of the universe of a model will be called states, points, or worlds.
In the modal part of this chapter we shall confine ourselves to models that
have a number of binary relations (usually just one, which we denote by R)
and a countable number of unary relations P0, P1, . . . See Figure 7.1 for a
graphical presentation of these models.

A modal language is a simple yet expressive language for talking about
such relational structures. In this chapter we consider only propositional
modal languages; these can be described as extensions of the classical
propositional language with a collection of modal connectives such as the
unary modal operator �. Like the boolean connectives, the modal operators
do not bind variables. The size of a formula ϕ (notation |ϕ|) in a modal
language L(Φ) (i.e., with propositional variables from a set Φ) is its length
over the alphabet Φ ∪ {¬,∧, (, ),∇i}i∈I , where {∇i | i ∈ I} denotes the set of
modal connectives of L.

�

�

�

�

P0, P1

P1 P1

P0

M1

A model M = (W,R,P0, P1) can be seen
as a colored directed graph; the edges give
the relation R, and the colors show the inter-
pretation of the unary predicates. (Note that
points can have more than one color.) The
graph part (W,R) of the model is also called
a modal frame.

Fig. 7.1. Graphical representation of a model
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Finally, � is a function which takes a model M and a formula ϕ and
returns a subset of the domain of M that we shall think of as the meaning
of ϕ in the model. The standard terminology for stating that s ∈ �(M, ϕ) is
that ϕ is true or holds at s in M, and the standard notation is

M, s � ϕ.

The meaning of the propositional variable pi is the corresponding set Pi, and
thus

M, s � pi ↔ Pis.

For the Boolean connectives we have the standard interpretation in mind,
which requires that ¬ϕ is true at a state iff ϕ is false (i.e., not true) at it,
and that ϕ ∧ ψ holds precisely at those states where both ϕ and ψ hold.

The conditions on modal systems mentioned so far still allow for an
enormous freedom in defining the semantics of the modal connectives. But
even in this very wide and general setting we can introduce the notions of
satisfiability and validity associated with such a triple: we call a formula valid
if it is true at every state of every model of the system, and satisfiable if it
is true at some state of some model of the system. The validity problem of
a modal system is the problem of deciding whether a given formula of the
language is valid or not; the satisfiability problem is defined analogously.
Given our constraints on the interpretation of Boolean negation, it is obvious
that a formula ξ is valid in a class K of models if and only if its negation
¬ξ is not satisfiable in any model in K. Hence, for any class of models K,
there are constant-time reductions between the satisfiability problem and the
complement of the validity problem. We shall use this fact in what follows
without explicit mention; also, we shall use the term “complexity of a modal
system” when referring to its satisfiability problem.

Each of the three ingredients of a modal system — the language L,
the class K of models, and the interpretation function � — influences the
complexity of the satisfiability problem. We shall see that many important
and interesting modal systems have a decidable satisfiability problem, but
the above definition of a modal system is also wide enough to allow for
systems whose satisfiability problem is highly undecidable. Our aim in this
chapter is to provide some rough guidelines for determining the complexity
of a modal system. For the sake of a simple exposition, we first restrict our
attention to a simple yet interesting type of models: those of the signature
with one binary relation R and a number of unary relations. Even with this
signature fixed, we still have an enormous freedom in defining the modal
language L and the meaning of the modal connectives given by the function
�. What, then, the reader will ask, is particularly modal about a system?
We shall now state a further restriction on modal systems which is very
characteristic of modal logic. It concerns the discriminatory power of modal
languages.
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Bisimulation

An informative way to identify a language is by saying which differences
between models it is blind to. In the case of modal logic, the fundamental
concept of equivalence between structures involves the notion of bisimulation.

Definition 7.2.1. Given two models M = (W,R,Pi)i∈I and M′ =
(W ′, R′, P ′

i )i∈I , a nonempty relation Z ⊆ W ×W ′ is a bisimulation between
M and M′ if the following three conditions hold, for all states s ∈ W and
s′ ∈ W ′ that are linked by Z:

(base) for all i: Pis iff P ′
is

′;
(forth) for all t ∈W such that Rst, there is a t′ ∈W ′ with R′s′t′ and tZt′;
(back) for all t′ ∈ W ′ such that R′s′t′, there is a t ∈W with Rst and tZt′.

If there is some bisimulation Z linking s and s′, then we say that s and s′

are bisimilar; as notation we use: s ↔ s′, or M, s ↔ M′, s′ if we wish to
make the models explicit.

Figure 7.2 contains two simple examples of bisimulating models (the
models bisimulate horizontally) in a language with only one unary relation
P . Figure 7.3 shows two models which do not bisimulate at the roots. All
states in both models satisfy the same unary relations; M′ has all of the
finite branches that M has, but in addition it contains an infinite branch.

We can now make the crucial restriction on � precise: we want the truth
of modal formulas to be invariant under bisimulations. That is, our basic

p p
w0 w1

�
�p w

�

p ¬p
w v�

� ¬pp¬pp
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Fig. 7.2. Two examples of bisimulating models
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Fig. 7.3. M, w and M′, w′ are not bisimilar
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interest is in a truth definition for the modal connectives that makes the
semantics satisfy the following constraint:

if M, s↔M′, s′, then for all ϕ: M, s � ϕ iff M′, s′ � ϕ. (7.1)

We shall call any system in which � meets this constraint a modal system in
the narrow sense.

But why would we be interested in a language that cannot see the
difference between bisimilar states (if not for technical reasons)? Apart from
the original logical considerations that we are about to describe, an important
reason stems from theoretical computer science. Here, or more specifically in
the field of process theory, one models processes as labeled transition systems;
these are relational structures like the one we describe here, though usually
with a collection of binary relations instead of just one. The idea here is that
a state s in a model M represents some state of the process: the predicates
Pi correspond to various direct observations that we can make about states,
and the relations Rj correspond to the various transition steps that the
process may take. A pair (s, t) belonging to the relation Rj indicates that at
s the process can take an Rj-step, thus reaching the state t, where new direct
observations can be made, or new steps can be taken. Now, in this context,
states that are bisimilar cannot be distinguished from a process-theoretic
point of view and thus represent the same state. Thus, bisimulation serves
as one of the most fundamental notions of identity between process states.
This explains why languages designed for expressing properties of processes
should indeed be blind to the distinction between bisimilar states.

Let us turn to some concrete examples. We first give some examples of
operators which meet this requirement:

M, s � �ϕ if M, t � ϕ for some t such that Rst;
M, s � 〈∗〉ϕ if there is some path s = s0Rs1Rs2 . . . Rsn = t through M

such that M, t � ϕ (including the empty path);
M, s �  ∞ϕ if there is some path s = s0Rs1Rs2 . . . through M

such that M, si � ϕ for infinitely many i.

We shall show later on that indeed, � does not break the bisimulation invari-
ance (see (7.2) below; the proofs for the other operators are left to the reader).

The operators 〈�=〉,E,P, and U defined below are not invariant under
bisimulations. Figure 7.4 shows two models M1,M2, both of signature R,P ,
and worlds s1, s2, which bisimulate. The valuation of P is indicated in the
models. Since both s1 and s2 have no successors, they bisimulate because
they are both not in P . It is easy to see that 〈�=〉p,Ep and Pp are all true
at s1 and all false at s2. A counterexample to the bisimulation invariance of
the binary connective U is provided just above Figure 7.7 on page 398. The
semantics of the operators is defined as follows:
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Fig. 7.4. The modal operators 〈�=〉,E and P are not invariant under bisimulations

M, s � 〈�=〉ϕ if M, t � ϕ for some t such that s �= t;
M, s � Eϕ if M, t � ϕ for some t in M;
M, s � Pϕ if M, t � ϕ for some t such that Rts;
M, s � U(ϕ, ψ) if M, u � ϕ for some u such that Rsu;

while M, t � ψ for all t satisfying Rst and Rtu.

It seems that � is the simplest nontrivial operator that satisfies the condition
of bisimulation invariance. The modal system in which we take � as the
only modal operator, in which we allow every relational structure (of the
appropriate signature) as a model, and in which � has the standard definition,
is called the basic modal logic. It is discussed in detail in Sect. 7.3.

Some Comments

Before turning to the discussion of the basic modal system, a few comments
are in place.

First, it was not our intention to give very rigid definitions. For instance,
the question of whether the universal diamond E constitutes a modal system
in the narrow sense is really dependent on the perspective that one takes.
Earlier on we said that E is not bisimulation-invariant, but what if we take as
our class of models precisely those in which R is the universal relation on the
model (that is, ∀xy Rxy)? In this case the truth definition for E does satisfy the
standard, “bisimulation-invariant” clause for the diamond E; the only thing is
that now, our class of models is not closed under taking bisimilar models. . .

Second, in our introductory discussion we avoided the word “logic”. In
principle, we prefer to use this word in the technical sense only, referring
to a set of formulas that satisfies certain closure properties. For instance, a
normal modal logic should be closed under the familiar law of Modus Ponens,
and under the rule of Necessitation; the latter means that �ϕ belongs to
the logic whenever ϕ does. We can associate such a logic with many modal
systems; in particular, when the system’s class of models is defined through
some property of the binary relation(s) only, the collection of valid formulas
will form a logic in the technical sense. Thus the validity problem can often
be identified with a membership problem, namely that of a formula in a
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logic. In a number of cases, we shall forget our principles and follow custom
in referring to this associated logic instead of to the modal system.

Finally, the term “modal system in the narrow sense” should not be taken
too literally; by playing around with the class K of models, the reader will
easily see that our definition covers a wide range of modal logics. In fact, if
we allow languages with more than one modality, then even various versions
of first-order logic itself, such as the finite-variable fragments, can be seen as
modal systems in the narrow sense!

7.3 Basic Modal Logic

In this section, we shall introduce the basic system of modal logic and discuss
its close connection to the notion of bisimulation. We shall provide a fairly
detailed proof of the decidability of the satisfiability problem for basic modal
logic and analyze this result in terms of looseness and locality.

Definition 7.3.1. Given a set Φ of propositional variables, the collection
L�(Φ) of basic modal formulas in Φ is given by the following rule:

ϕ ::= p | ¬ϕ | ϕ ∧ ψ | �ϕ,

where p ranges over elements of Φ. This means that ϕ is either an atomic
formula consisting of a proposition letter in Φ, or a more complex formula
obtained from simpler ones by applying one of the connectives ¬, ∧, or �.
We shall use the standard Boolean abbreviations and also the modal “box”
operator �, where �ϕ abbreviates ¬�¬ϕ.

If the collection Φ of proposition letters is either irrelevant or clear from
context, we shall frequently omit it, writing L� instead of L�(Φ). In order to
interpret the formulas of this language in a model of the kind discussed above,
we represent such a model as a triple M = (W,R, V ) where W is a nonempty
set of states, R is the binary relation of the model, and V : Φ → P(W ) is
a valuation mapping proposition letters to subsets of W . Let M denote the
class of all such models.

Definition 7.3.2. Given a model M = (W,R, V ), a state s ∈ W , and a
formula ϕ, we define the notion of ϕ being true at s, denoted by M, s � ϕ,
recursively as follows:

M, s � p if s ∈ V (p);
M, s � ¬ϕ if not M, s � ϕ;
M, s � ϕ ∧ ψ if M, s � ϕ and M, s � ψ;
M, s � �ϕ if M, t � ϕ for some t such that Rst.

If ϕ is true at every state of the model we say that ϕ holds throughout M,
denoted by M � ϕ; if ϕ holds at some state in M, we say that ϕ is satisfiable
in M.
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The language of the basic modal system is L�, its class of models is M,
and � is as in the first part of this definition. Depending on the context, we
let K denote either the basic modal system itself or its logic, that is, the set
of valid formulas in this system.

As the reader can easily verify, it holds that

M, s � �ϕ if M, t � ϕ for all t such that Rst.

The first thing we should check is whether we have met our design crite-
rion (7.1) with this definition of �. Suppose that M and M′ are two modal
models, and that Z is a bisimulation between M and M′. We shall prove by
a formula induction that every basic modal formula ϕ satisfies the following:

for all s ∈ W and s′ ∈ W ′: sZs′ implies that M, s � ϕ iff M′, s′ � ϕ. (7.2)

We leave the base step and the boolean cases of the inductive step as exercises
for the reader, and concentrate on the modal case of the inductive step.
Suppose that ϕ is of the form �ψ, and assume that Z links the state s in M
to s′ in M′. For reasons of symmetry, it suffices to show that M, s � ϕ only
if M′, s′ � ϕ.

Suppose that M, s � �ψ. By the truth definition, it follows that there is
a state t in W such that Rst and M, t � ψ. From the fact that s and s′ are
linked by the bisimulation Z, we may infer that there is some R-successor t′

of s′ such that s′Zt′. The inductive hypothesis gives us that M′, t′ � ψ; but
we may then conclude from R′s′t′ that M′, s′ � �ψ, which is precisely what
we were after. This proves (7.2) and shows that basic modal logic indeed
constitutes a bisimulation-invariant system.

Invariance Under Bisimulation

So our definition fulfills our design criterion, but how powerful is this modal
language precisely? In other words, how many of the bisimulation-invariant
properties can we express in this language? It should be obvious from the
truth definition of basic modal logic that we can consider L� as a fragment
of first-order logic. In fact, we have a kind of functional completeness result
as long as we consider first-order properties: every first-order definable
bisimulation-invariant property is definable by a modal formula. In other
words, when it comes to expressing bisimulation-invariant properties, modal
logic is just as strong as first-order logic. In order to state this result formally
we need a translation from modal to first-order formulas.

Definition 7.3.3. Assume that we have an enumeration x = x0, x1, . . . of
first-order variables. Consider the following translation of L�-formulas to
first-order formulas:
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STxi(p) = Pxi
STxi(¬ϕ) = ¬STxi(ϕ)

STxi(ϕ ∧ ψ) = STxi(ϕ) ∧ STxi(ψ)
STxi(�ψ) = ∃xi+1(Rxixi+1 ∧ ST xi+1(ϕ)).

When we speak of “the” standard translation of a modal formula ϕ, we are
usually referring to the formula STx0(ϕ).

We can now see modal logic as a fragment of first-order logic because
every modal formula is equivalent to its standard translation. Formally (but
blurring the distinction between a modal and a first-order model a little), we
can prove that for every modal formula ϕ, for every model M, and for every
state s in M we have the following equivalence:

M, s � ϕ↔M |= STx0(ϕ)[x0 �→ s]. (7.3)

Here [x0 �→ s] denotes any assignment which sends x0 to s. The simple proof
of (7.3) is left to the reader.

Observation 1 The map in Definition 7.3.3 has no upper bound on the num-
ber of variables used in the first-order translation of a modal formula. However,
one could be very parsimonious and define the formulas STx(ϕ) and ST y(ϕ)
through a mutual recursion, of which the interesting clauses run as follows:

ST x(�ψ) = ∃y(Rxy ∧ ST y(ϕ))
ST y(�ψ) = ∃x(Ryx ∧ STx(ϕ)).

This shows that, in fact, the translation of modal logic to first-order logic
can be carried out within the two variable fragment of first-order logic. We
shall come back to this observation later on.

Now we are ready to state the celebrated Characterization Theorem for
modal logic.

Theorem 7.3.4. Let ϕ(x) be a first-order formula in the signature consisting
of a binary R and a set {Pi | i ∈ I} of unary predicates. Then ϕ(x) is
invariant under bisimulations if and only if it is equivalent to the standard
translation of a modal formula.

The proof of the functional completeness part of the theorem (the left-
to-right direction) falls outside the scope of this book but can be found in
any good textbook on modal logic; see the notes. The other direction of the
theorem, which just states that the modal language obeys the design criterion
(7.1), is the more important one for us here. One way to look at (7.1) is that
once we know that a formula is satisfiable at some state in some model, we
know by the invariance result that it is also satisfiable in any bisimilar state in
any bisimilar model. This means that we can transform the original model into
one that suits our purposes best. Obviously, this method applies to any notion
of invariance for any language. The nice thing about bisimulation, however, is
that it allows the freedom of completely unraveling a model into a tree model.
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Definition 7.3.5. Given a model M = (W,R, V ) and a state s1 in M,
we define the unraveling or unwinding of M around s1 as the following
model Mu

s1 = (  Ws1 ,  R,  V ). Its universe  Ws1 is defined as the set of all finite
paths through M starting at s1; formally,  Ws1 is the collection of all tuples
〈s1, . . . , sn〉 (with n ≥ 1) that satisfy Rsisi+1 for all i < n. The relation  R
holds of the tuples s = 〈s1, . . . , sn〉 and t = 〈t1, . . . , tm〉 if and only if t is
obtained from s by adding an R-successor of sn. Formally, we put  Rst if
m = n + 1 and si = ti for all 1 ≤ i ≤ n. Finally, the truth of a proposition
letter at a tuple is completely determined by its truth in M at the last element
of the tuple. Formally, let last(〈s1, . . . , sn〉) denote the state sn, and define
 V by  V (p) = {s ∈  Ws1 | last(s) ∈ V (p)}.

An example of an unraveling is given in Figure 7.5. Another example can
be found in Figure 7.2, in which the model on the lower right-hand side is (an
isomorphic copy of) the unraveling of the model on the lower left-hand side.

The operation of unraveling is also well known from process theory: the
points of the unravelled model Mu

s1 can be viewed as the process histories
or traces that start at s. From a technical perspective, the unraveling of M
around s1 has certain desirable properties:

• there exists a point with no predecessor, the root ;
•  R is acyclic; and
•  R is injective in the sense that every point except the root has a unique

predecessor.

In other words, the graph (  Ws1 ,  R) is a tree. It is useful to look at this tree
as being a normal form of the model.

One can easily check that for any model M and any state s in M, the
(graph of the) function last :  Ws → W constitutes a bisimulation between
Mu

s and M that links 〈s〉 to s. But it immediately follows from this that 〈s〉
(in Mu

s ) satisfies exactly the same formulas as s (in M). Combining this with
the observation that unravelings are trees, we find that every satisfiable basic
modal formula is also satisfiable in a tree. We say that a modal system (L,K,�
) has the tree model property if, for every satisfiable formula ξ in L, there exists
a tree in K in which ξ is satisfiable. Thus we have established the following.

Theorem 7.3.6. The basic modal system has the tree model property.

The following observation is a driving force behind our search for decidable
modal fragments of first-order logic.

s0

s1

s2

s3




�

�

 〈s0〉

〈s0, s1〉

〈s0, s2〉

〈s0, s1, s3〉

〈s0, s2, s3〉




�

�

�

Fig. 7.5. Example of an unraveling
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Observation 2. In proving the last theorem we did not use any property of
basic modal logic other than its invariance under bisimulation. This means
that, in fact, any modal system with a bisimulation-invariant semantics
has the tree model property — provided, of course, that tree models are
admissible in the system!

Games

In order to facilitate a comparison with the Ehrenfeucht-Fräıssé games often
used in first-order logic, it is convenient to rephrase the notion of a bisimu-
lation between two models in game-theoretic terms. Let M = (W,R, V ) and
M′ = (W ′, R′, V ′) be two models, and let s0 and s′0 be two states in M and
M′, respectively.

We define the bisimulation game as a variant of the familiar Ehrenfeucht-
Fräıssé games. In each round of the bisimulation game, ∀ selects one of the
two models and, inside this model, he chooses a successor of the element
played in the previous round (in the first round he chooses a successor of s0

or s′0). ∃ responds with a successor of the last element played in the other
structure. The length l of the game is defined as the number of rounds and
can be either finite or infinite. A match of the game thus gives rise to two
sequences: s = s0, s1, s2, · · · and s′ = s′0, s′1, s′2, · · · , of elements in M and M′,
respectively.
∃ wins this match of the game if for each i, si and s′i agree on the truth

of all propositional variables; otherwise, ∀ wins. We say that ∃ has a winning
strategy in the game Glb(M,M′, s, s′) of l rounds played in M, s, M′, s′ if ∃
can win every match of length at most l starting in the states s and s′.

It should be fairly clear that ∀ is trying to spoil a bisimulation between
M, s and M′, s′, while ∃ has the opposite intention. Indeed we have a precise
game-theoretic characterization of the notion of bisimulation.

Proposition 7.3.7. There exists a bisimulation between M, s and M′, s′ if
and only if ∃ has a winning strategy in the game Gωb (M,M′, s, s′).

As a corollary, we find that the truth of modal formulas is preserved when
∃ has a winning strategy in the game Gωb (M,M′, s, s′). What is interesting
about these games is that they facilitate a more fine-grained perspective on
such connections. In particular, if ∃ has a winning strategy in a game of fixed
finite length n, what can we say about the preservation of modal formulas?
Quite a lot, according to the proposition below; in order to formulate it, we
need the notion of the modal depth of a formula — the straightforward analog
of first-order logic’s quantifier depth.

Definition 7.3.8. The modal depth d�(ϕ) of a modal formula is inductively
defined as follows:
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d�(p) = 0
d�(¬ψ) = d�(ψ)

d�(ψ1 ∧ ψ2) = max (d�(ψ1), d�(ψ2))
d�(�ψ) = 1 + d�(ψ).

Proposition 7.3.9. Let Φ be a finite set of proposition letters, and let n be
some natural number. The following are then equivalent:

1. ∃ has a winning strategy in the game Gnb (M,M′, s, s′).
2. M, s and M′, s′ satisfy the same L�(Φ) formulas up to modal depth n.

We omit the fairly standard proof of this proposition — the notes contain
references. The analogous proposition relating Gωb (M,M′, s, s′) and the full
modal language does not hold, as is witnessed by the models in Figure 7.3.

What have we gained from this slightly more fine-grained analysis of
modal logic? We have already seen that any satisfiable modal formula ξ can
also be satisfied at the root s of a tree model M: take, for instance, some
unraveling of the original model. From Proposition 7.3.9 we can conclude
that such a ξ can also be satisfied in a bounded-depth tree model M′: simply
take the tree model M and throw away all states that are further than d
steps away from the root s (where d is the modal depth of ξ). It is obvious
that ∃ has a winning strategy in the bisimulation game Gdb (M,M′, s, s).
From this it follows that ξ holds at the root s of the bounded-depth tree M′.

Finite Trees

We shall now show that the satisfiability problem for the basic modal language
(with respect to the class of all models) is indeed decidable. We shall do so by
establishing the bounded model property. A modal language is said to have this
property with respect to a class K of models if every formula ξ that is satisfiable
in some model in K can in fact be satisfied in a finite model in K of bounded size
(that is, the size of the model is bounded by some computable function on |ξ|).

Now, in order to show that the language of basic model logic has this
bounded model property, let ξ be an arbitrary satisfiable formula. We have
already seen that we may assume that ξ is true at the root of a tree model M
of depth not exceeding the modal depth of ξ. This tree model might still be
infinite because of infinite branching, but now we recursively prune the tree
as follows. Starting at the root, for every subformula of ξ of the form �ϕ, we
choose a successor of the root at which ϕ is true (if such a successor exists at
all). Obviously, at most b successors can be chosen, where b is the number of
diamond subformulas of ξ. Hence, by deleting from the model all successors
that have not been chosen, together with their descendants, we obtain a tree
model whose branching degree at the root is at most b. A simple verification
shows that ξ still holds at the root. Now we repeat this process at each of
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the chosen successors of the root and continue until the leaves of the tree are
reached. Obviously, ξ is still satisfied at the root.

Thus we have proved the following.

Proposition 7.3.10. Any satisfiable modal formula ξ can be satisfied at the
root of a finite tree model, of which the depth is bounded by the modal depth of
ξ and the branching degree is bounded by the number of diamond subformulas
of ξ.

The decidability of basic modal logic is a straightforward corollary of this.
(For instance, we can use the standard translation, the equivalence (7.3), and
the fact that first-order model checking is decidable.)

Theorem 7.3.11. The basic modal system K has a decidable satisfiability
problem.

We shall now describe a decision procedure which on input ξ systemati-
cally tries to build the tree model for ξ described in Proposition 7.3.10. The
procedure is based on a simple but powerful idea: it tries to build a model
(W,R, V ) in which

1. the states are finite sets Δ of “relevant” formulas;
2. we have the following “truth = membership” principle:

ϕ ∈ Δ↔M, Δ � ϕ, (7.4)

for all relevant formulas ϕ and for all states Δ in the model.

Suppose we can build such a model for an input formula ξ. Then by the truth
lemma (7.4), ξ is satisfiable if it belongs to some state Δ in our model. Our
implementation of the decision procedure is based purely on the proof of the
truth lemma; hence, in order to motivate the procedure, we now indicate
how to arrive at this proof. Fix a formula ξ.

Let us first confine the collection of relevant formulas. This set will change
from state to state but, basically, all relevant formulas will be subformulas
of ξ; we need a little extra, though. Given a formula ϕ, let ∼ϕ denote the
formula ψ if ϕ is of the form ¬ψ; otherwise, ∼ϕ is the formula ¬ϕ; we say
that a set Σ of formulas is closed under taking single negations if ∼ϕ ∈ Σ
whenever ϕ ∈ Σ. This notion enables us to pretend that a finite set is closed
under taking negations by treating ∼ϕ as if it were the real negation of ϕ.
Now, given a set of formulas Σ, let Cl(Σ) be the smallest set of formulas
that extends Σ and is closed under taking subformulas and single negations.
When ξ is a formula, we denote the set Cl({ξ}) of relevant ξ formulas as
Cl(ξ); it is easy to see that the cardinality of Cl(ξ) is linear in the length of ξ.

Each state of our model M = (W,R, V ) will be a subset of Cl(ξ), but
rather than precisely define the universe W now, we assume here that we
have defined it, and gather sufficient requirements to be placed on this
definition to enable a proof of (7.4). First we consider the valuation: the
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truth lemma prescribes a unique way to define V , at least for the proposition
letters occurring in ξ: V (p) = {Δ | p ∈ Δ}. For a definition of the relation
R, we shall be rather opportunistic. Again we use the truth lemma as our
guideline: it shows that if R(Δ,Δ′) is to hold, then we should avoid the
existence of a relevant formula �ϕ such that ϕ ∈ Δ′ but �ϕ �∈ Δ. Now, R is
defined by turning this requirement into a definition: we put (Δ,Δ′) into R
precisely when the above situation does not occur.

Let us now see what requirements we have to impose on the set W ;
that is, suppose that we want to give an inductive proof of the “truth =
membership” principle. Assume that with each state Δ, we have associated
a collection Σ ⊇ Δ of relevant formulas.

Obviously, the atomic case of the truth lemma holds by the definition of
V . For the inductive boolean cases to go through, it is sufficient to require
that Δ is maximal with respect to being a propositionally consistent subset of
Σ. That is, Δ and Σ have to satisfy the following condition Prop-Max(Δ,Σ):
– (for each ∼ϕ ∈ Σ): ∼ϕ ∈ Δ↔ ϕ �∈ Δ; and
– (for each ϕ ∧ ψ ∈ Σ): ϕ ∧ ψ ∈ Δ↔ ϕ ∈ Δ and ψ ∈ Δ.

The inductive modal case imposes two further constraints, one for each
direction of the truth lemma. We met the first one already when we defined
our relation R, but given that Prop-Max(Δ,Σ) holds, we can reformulate
this condition as follows:

• if R(Δ,Δ′), then for all �ψ ∈ Σ: ∼�ψ ∈ Δ implies ∼ψ ∈ Δ′.

This formulation clearly brings about the conditions that each successor of Δ
should satisfy. The other direction of the truth lemma for the case ϕ = �ψ
presents an existential requirement:

• if �ψ ∈ Δ, then there has to be a Δ′ such that ψ ∈ Δ′ and R(Δ,Δ′).

Observe that in this last existential requirement we encounter the branch-
cutting argument that we saw earlier on. Then we only kept successor states
if there was a reason in the form of a �ψ formula; now, we only create a
successor if we need it as a witness for such a formula. The search for suitable
successors is the driving force behind our algorithm.

But what about these associated sets of relevant formulas? Will every for-
mula in Cl(ξ) be relevant throughout the procedure? No, and this is precisely
what will bound the recursion depth of the algorithm: the set of relevant for-
mulas will decrease as we move away from the root of the model. This is remi-
niscent of the bounded depth of the tree model in Proposition 7.3.10. In partic-
ular, the set of relevant formulas for a state Δ which is m steps away from the
root will consist of all formulas from Cl(ξ) of modal depth at most d�(ξ)−m.

The algorithm presented in Figure 7.6 implements this search for a tree
model. We claim that for sets of formulas Δ and Σ such that Σ is closed
under taking subformulas and single negations, K-World(Δ,Σ) will be true
iff there exists a tree model M such that at the root s, for all ψ ∈ Σ,
(M, s � ψ ↔ ψ ∈ Δ). This function can be used to solve the satisfiability
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Assume that Δ and Σ are finite sets of formulas such that Δ ⊆ Σ and
Σ is closed under taking subformulas and single negations.

K-World(Δ,Σ) if and only if

• Prop-Max(Δ,Σ), and
• for each formula �ψ ∈ Δ there is a set Δψ ⊆ Σ such that

– ψ ∈ Δψ,
– (∀�ϕ ∈ Σ) : ∼�ϕ ∈ Δ⇒ ∼ϕ ∈ Δψ, and
– K-World(Δψ,Cl({ϕ | �ϕ ∈ Σ})).

Fig. 7.6. The function K-World decides K satisfiability

problem for the basic modal system, since ξ is satisfiable iff there exists a set
Δ ⊆ Cl(ξ) such that ξ ∈ Δ and K-World(Δ,Cl (ξ)) is true.

Note that with each recursive call of K-World, the size of the set Σ
decreases, since we include formulas of smaller modal depth only. Thus the
recursion depth is bounded by the modal depth of the input formula ξ.
That the function is correct can be proved by induction on the size of Σ;
we leave this to the reader. By an appeal to Savitch’s Theorem (PSPACE =
NPSPACE), it is not hard to see that the procedure runs in PSPACE. We
shall come back to this aspect in Section 7.5.

This finishes the proof of Theorem 7.3.11; in the remainder of this chapter
we shall analyze this proof and see how much of it can be used for other
(modal) logics.

Looseness and Locality

In analyzing this decidability proof, we can distinguish a number of relevant
properties of the basic modal system. First of all, bismulation invariance
ensures that, in order to check the satisfiability of a modal formula, we only
have to worry about “loose” tree models. We shall call this the looseness
principle of basic modal logic; this property has recently gained status as
either the single or at least the crucial property that makes modal logic so
robustly decidable.

However, we believe that looseness is not all there is to say in relation
to explaining the decidability (or low complexity) of the basic modal system
K. The semantics of the basic modal language shows that modal formulas
only have a limited access to the model. This is what we dub the locality
principle of modal logic, and one can make this rather vague notion precise
in (at least) two ways.

First, in the above proof we used the fact that the effect of a modal
formula is bounded by its modal depth. In particular, when working in a tree
model we can prune the relevant neighborhood of a state even further by
the method of selecting witnesses for �-subformulas. All in all, we find that
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in order to check whether a modal formula holds at a given state of some
tree model, one only has to worry about a bounded, “local” part of the tree
model. In particular, what the basic modal language does not have is global
expressive power. We say that a modal system (L,K,�) has global expressive
power if it can define the universal diamond E; that is, if there is a formula
ϕ(p) such that for every model M in K and every state s in M, we have

M, s � ϕ(p) ↔M, t � p for some t in M.

By the first locality principle, we mean the lack of global expressive power.
Later on, we shall see that if we add even the tiniest bit of global expressive
power to the basic modal system, we destroy its finite tree property and lift
the complexity of the satisfiability problem from PSPACE to EXPTIME.

We have already met the second locality principle in Observation 1. From
the fact that the basic modal language belongs to the two-variable fragment
FO2 of first-order logic, we may conclude that the satisfiability problem
for the basic modal system can be reduced to that for FO2. But, for every
modal language in which the connectives have a first-order truth definition,
we can come up with a “standard translation”, so if the language has only
finitely many connectives, this standard translation remains within a fixed
finite-variable fragment. Hence, if we consider a modal system (L,K,�)
in which L has only finitely many connectives and in addition, the class
of models K allows a definition in some finite-variable fragment, then the
satisfiability problem for the modal system can be reduced to that of some
finite-variable fragment FOk. Why are we interested so much in these fixed
finite-variable fragments? As we shall see later, one reason is that they have
tractable model checking problems, whereas the full first-order language does
not. To be concrete, given a finite first-order model M and a first-order
sentence ξ, the problem of whether M |= ξ is decidable in PTIME in M
and in ξ, if ξ is from a fixed-variable fragment, whereas it is in PSPACE if
ξ is an arbitrary first-order sentence. With the second locality principle, we
shall mean this reducibility of the satisfiability problem to the satisfiability
of some fixed finite-variable fragment of first-order logic (or perhaps of
some higher-order formalism, as in the case of K∗ which we shall discuss
later on).

It will be useful later to state what we mean by looseness and locality in
terms of the bisimulation game. Since it is ∀ who tries to spoil a bisimulation,
the strength of the bisimulation relation is determined by the moves ∀ is
allowed to make. Indeed, ∀’s powers are limited. First, observe that although
a match is made up of long sequences of pairs of states, after every round it
is only the last pair which is important. Given such a pair, ∀ is allowed to
choose a new element, but only if it is a successor of a state in the pair. ∃
replies and then the players check whether the match is over because ∀ has
won or not. If not, the previous pair “is deleted from memory” and the game
continues.
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We could view the game as being played by moving two windows across
the models. These windows completely hide the model from view, except for
at most two states. Both players move the windows across the models, and ∀
has the initiative. Now, the principle of looseness means that the states which
are visible through the window are always connected by the accessibility
relation (this shows we could equally well have dubbed the “looseness
principle a “locality” principle as well). The second locality principle is
embodied in the fixed finite dimension of the window. (To describe the first
locality principle, games do not seem to be the optimal way.)

Summarizing, it seems that these looseness and locality principles in
tandem cause the decidability of the basic modal system: looseness means
that one only has to check trees, and the first locality principle adds that in
fact finite trees suffice. (For the contribution of the second locality principle,
the reader will have to wait until we discuss the generalization of the modal
language to the guarded and packed fragments of first-order logic in Sect. 7.6.)
There can be no doubt that looseness is the most important property for the
decidability of a modal system; in fact, if we confine ourselves to the class M
of all modal models, it will be hard to find a bisimulation-invariant system
with an undecidable satisfiability problem! The reason for this is that the
modal mu-calculus is decidable, and this modal system can be characterized
as the bisimulation-invariant fragment of monadic second-order logic over a
signature of binary relations.

7.3.1 Notes

Recent years have seen a proliferation of modern textbooks on modal logics,
of which we mention those by Chagrov & Zakharyaschev [14], Popkorn [49]
and Blackburn, de Rijke, & Venema [9].

The standard translation, in various forms, can be found in the work of
a number of writers on modal and tense logic in the 1960s. Van Benthem [4]
first made clear the importance of systematic use of the standard translation
to access results and techniques from classical modal theory. The observation
that at most two variables are needed to translate basic modal formulas
into first-order logic is due to Gabbay [20]. The earliest systematic study
of finite-variable fragments seems to be due to Henkin [26] in the setting
of algebraic logic, while Immerman & Kozen [34] studied the link with
complexity and database theory. See Otto [47] for more on finite-variable
logics, or Marx & Venema [43] for a modal perspective on these logics.

Bisimulations were first introduced (under a different name) by
van Benthem [4, 5]. The notion was introduced independently in com-
puter science, as an equivalence relation on process graphs; the first reference
seems to be Park [48], while the classic computer science paper on the
subject is Hennessy & Milner [28]; the latter paper also discusses finitary
approximations to bisimulations. The notion of unraveling a modal model
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stems from Dummett & Lemon [16]. Proposition 7.3.9 is analogous to similar
characterizaions of logical equivalence for first-order logic, due to Ehrenfeucht
and Fräıssé (see [31]).

Theorem 7.3.4, the Characterization Theorem which identifies modal
logic as the bisimulation-invariant fragment of first-order logic, is due to
van Benthem [4, 6]. The back-and-forth clauses of a bisimulation can be
adapted to analyze the expressivity of a wide range of modal logics, and
such analyses are now commonplace. For instance, Janin & Walukiewicz [35]
have proved that Kozen’s modal mu-calculs is the bisimulation-invariant
fragment of a natural monadic second-order logic over process graphs.
Related model-theoretic characterizations can be found in Immerman &
Kozen [34] (for finite-variable logics). Rosen [51] has presented a version
of the Characterization Theorem that also works for the case of finite
models.

Finite models have long been used to establish decidability, both in modal
logic and elsewhere. Arguments based on finite axiomatizability together
with the finite model property can be traced back to Harrop [25]. The
computational complexity of the satisfiability problem for the basic modal
system was established by Ladner [37]: it is PSPACE-complete. The function
K-World is a slight variation of Ladner’s procedure. The presentation given
here is taken from Spaan [55].

The problem of whether M |= ξ for a given a finite first-order model M
and a first-order sentence ξ, is PTIME-complete when ξ is from a fixed finite-
variable fragment (see Immerman [33], Vardi [57]), but PSPACE-complete
when ξ is an arbitrary first-order sentence (Chandra & Merlin [15]).

7.4 Some Variations

In this section, we shall consider some modal systems that are variations
on the basic modal system. Apart from our wish to introduce some new
proof techniques for establishing decidability of a modal system, such as
the filtration and mosaic methods, our aim in this section is to clarify the
looseness and locality principles that we have just introduced.

We shall first investigate some modal systems that are fairly “tight” in the
sense that their class of models is based on grid-like structures; as we shall
see, such a lack of looseness brings these systems close to the danger zone of
undecidability. Nevertheless, if the locality principles still hold, decidability is
still possible. The second system that we consider is obtained by adding just
a grain of global expressive power to the basic modal language, while keeping
the looseness condition. We shall see that the system is still decidable, but it
no longer has the finite-tree property. Finally, we consider a modal system in
which the operator is not bisimulation-invariant at all; however, as we shall
see, it does have another kind of looseness property, and this enables us to
prove its decidability.
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7.4.1 Neither Locality nor Looseness: Grid Logics

In this subsection, we consider modal systems that cannot be called loose
or local. We shall first meet a simple modal system that is tailored towards
encoding the N×N-tiling problem, and is undecidable; as a contrast, we shall
also discuss a second system with grid-like models which has a decidable
satisfiability problem.

A Tiling Logic

In looking for the opposite of looseness one is bound to end up with a grid.
Grids are well known in complexity theory, since they play an important role
in the formulation of a class of complete problems for various complexity
classes: tiling problems. A tile is a one-by-one square which has a “color” on
each of its sides; these colors are given by four functions “right”, “left”, “up”,
and “down”. Given a set T of tiles, a tiling of the grid N× N by T is a map
t from N× N to T satisfying, for all n,m ∈ N,

right(t(n,m)) = left(t(n + 1,m)),
up(t(n,m)) = down(t(n,m + 1)).

Tiles are assumed to be fixed in orientation, so the above conditions say that
colors of adjacent tiles match. (We note that it is not necessary to use all tiles
of T in a tiling of N×N.) If such a tiling exists, we say that T can tile N×N.

The following problem is undecidable:

N× N tiling: Given a finite set T of tiles, can T tile N× N?

We shall now define a modal system Tile which is tailored to encode the
above tiling problem. The language of Tile contains two unary modalities �r

and �u plus the universal modality E. In a model of the form (W,Rr, Ru, V ),
these modalities receive their meaning in the usual way:

M, s � �rϕ ↔M, t � ϕ for some t with Rrst,
M, x � �uϕ ↔M, t � ϕ for some t with Rust,
M, x � Eϕ ↔M, t � ϕ for some t.

In the intended class of grid models, Rr and Ru are (the graphs of) two
commuting total functions. In particular, grid models satisfy the following
condition:

∀xyz((Rrxy ∧Ruxz) → ∃w(Rrzw ∧Ruyw)). (7.5)

Because of this, the class of grid models is not closed under unraveling; hence,
Tile does not satisfy the looseness principle. It is also rather obvious that the
first locality principle fails as well, in the presence of the universal modality;
we leave it to the reader to verify that the class of grid models can be
defined using three variables only, and Tile thus satisfies the second locality
principle.
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Theorem 7.4.1. The satisfiability problem of Tile is undecidable.

Proof. Obviously, we reduce the N × N-tiling problem to the satisfiability
problem for Tile. We present a procedure that outputs, for every instance T
of the tiling problem, a formula ϕT such that

AϕT is Tile-satisfiable iff T can tile N× N. (7.6)

(Recall that A is the box version of E; that is, Aϕ abbreviates ¬E¬ϕ.)
Take, for any set T = {T1, . . . , Tk} of tiles, a corresponding set {t1, . . . , tk}

of propositional variables. Define ϕT as the conjunction of the following
formulas (where i ranges over 1,. . . ,k):

(A1)
∨

1≤i≤k ti
(A2i) ti →

∧
i�=j ¬tj

(A3i) ti → �r

∨
{tj | right(Ti) = left(Tj)}

(A4i) ti → �u

∨
{tj | up(Ti) = down(Tj)}.

It follows almost immediately that T tiles N × N if and only if there
exists a Tile model where ϕT holds throughout. (The reader should verify
that in the proof of the left-to-right direction of (7.6) the property (7.5) of
grid models is crucial.) This, in turn, is equivalent to the formula AϕT being
satisfiable in some Tile model. Thus (7.6) holds and we have reduced the
undecidable tiling problem to the Tile satisfiability problem. �

We hasten to remark that the undecidability of this system has nothing
to do with the fact that we are dealing with more than one modality here;
one can easily transform this example into an undecidable modal system in
the basic modal language extended with the universal modality, or in the
basic modal language proper.

It is interesting to note that without the universal access to the models
provided by A, these grid logics become quite harmless. In fact, their grid-like
nature ensures that every satisfiable formula ξ is satisfiable in a model whose
size is at most |ξ|2 + 1.

Theorem 7.4.2. Let Tile− be the modal system Tile, but now without the
universal modality. Then every Tile−-satisfiable formula ξ is satisfiable in a
Tile− model of size at most |ξ|2 + 1. As a corollary, Tile− has a decidable
satisfiability problem.

Proof. Let M satisfy ξ at s. Let k be the modal depth of ξ, we then have that
k ≤ |ξ|. By Proposition 7.3.9, ξ is still satisfiable in the model M′, defined as
the substructure of M with universe s together with all states reachable in
at most k (Rr- or Ru-)steps from s. Clearly, the size of the universe of M′

is at most k2. Unfortunately, M′ is not a Tile model, because not every state
has an Rr and Ru successor. In order to mend this, we add one dummy state
x to the universe of M′ and put a link from w to x for all states w (including
x itself) that do not have a successor yet. That is, we define W− = W ′ ∪ {x}
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and R−
r = R′

r ∪ {(w, x) | R′
rwy for no y in M′}, and likewise for R−

u . Let the
valuation stay the same, i.e., we define V −(p) = V ′(p) for all p.

The resulting model M− is a Tile model. Clearly, ξ is still satisfied at s
in this new model, since x is “too far away” to have any effect on the truth of
ξ. This proves the first part of the theorem. Decidability now follows because
it is decidable whether a finite model is a Tile model. �

S52

The second logic that we consider here is also based on grid-like structures,
but here we require only that the models are two-dimensional in nature; there
will be no orderings or functions around. The language has two diamonds,
�0 and �1, with the standard truth definition. The models are of the form
M = (W,≡0,≡1, V ), where we require that (W,≡0,≡1) is in fact a square
over some set U . That is, W consists of the set U × U of all pairs over U ,
and s ≡i t holds if si = ti: the ith coordinate of s and the ith coordinate of
t should be the same. We denote the resulting system by S52.

As a modal system, S52 might look rather obscure, but as a logic, it is
well known. In fact, it is the exact modal counterpart of a restricted fragment
of first-order logic with two variables in a signature that has a binary relation
symbol R for every propositional variable r. This can be seen as follows. First,
observe that the S52 model M = (W,≡0,≡1, V ) with W = U ×U is uniquely
determined by the first-order model (U, V ) for the signature described. Also
observe that we may identify assignments s mapping the two variables x0 and
x1 to U with pairs (s(x1), s(x0)) ∈ W . Thus, viewing the states of the modal
models as assignments, we may read the statement “ϕ holds in (U, V ) under
assignment s” modally as “in model (U ×U,≡0,≡1, V ), ϕ is true at state s”.
Because S52 models are squares, the truth definition of the diamonds can be
rewritten exactly as the definition of the first-order existential quantifiers:

M, (a, b) � �1ϕ↔ there exists a′ such that M, (a′, b) � ϕ.

Thus �i is another way of writing ∃xi. In a similar way, one can define modal
systems S5n corresponding to first-order logic with n variables for any n. See
the notes for references.

It will be obvious that this class of models is not closed under unraveling,
and that S52 will not have the tree model property. Concerning the locality
principles, observe that this system has full global expressive power: the
“combined” operator �0�1 behaves just like the universal diamond E.
Nevertheless, the system is decidable, and a proof of this uses some kind of
finite model property as well.

Here, instead of defining a finite model for ξ by selecting points out of
the old model, we shall identify points in the big model and define the finite
model as some sort of quotient structure, which we call a filtration of the
original model. It will turn out that this filtration will not be a square itself
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but a square-like structure, which we dub a pseudo-square here. That is to
say, in the underlying frame (W,R0, R1) both R0 and R1 are equivalence
relations, and their composition should be the universal relation. That is,
(W,R0, R1) has to validate

∀xy∃z(R0xz ∧R1zy). (7.7)

For these kind of structures, we can prove the following proposition, which
establishes the bounded finite model property of the language with respect to
the class of pseudo-squares. (In fact, the system does have the bounded finite
model property, but this is much harder to establish.) As we saw before,
decidability follows immediately, because it is decidable whether a finite
structure is a pseudo-square.

Proposition 7.4.3. Any S52-formula ξ is satisfiable in a square iff it is
satisfiable in a pseudo-square of size not exceeding 2|ξ|. As a consequence,
S52 has a decidable satisfiability problem.

Proof. We shall concentrate on the left-to-right direction of this proof, since
we are interested only in explaining the notion of filtration at the moment.
(For the other direction of the proof, one shows that given a pseudo-square
model, one can always find a square that is bisimilar to it — in fact, bisimilar
through a functional bisimulation; see the notes.)

Suppose ξ is satisfied somewhere in the square modelM = (W,≡0, ≡1, V ).
From this we shall prove that ξ is true somewhere in a filtrationMf of M. As
we have mentioned already, filtrating a model means collapsing it. But when
will two points in the original model be identified? Generally, taking a quotient
of a structure means identifying points without “relevant” differences; in the
present context this can be interpreted as “satisfying the same subformulas of
ξ”. Formally, we define Cl(ξ) to be the smallest set of formulas containing ξ
which is closed under subformulas. Now, we define the following relation on W :

s ∼ s′ ↔ for all ϕ in Cl(ξ) : M, s � ϕ iff M, s′ � ϕ.

Obviously, ∼ is an equivalence relation. Our filtrated model will be based on
the equivalence classes of this relation, and so we introduce some notation:
by s̄ we denote the equivalence class of a point s, and by W f , the set of these
classes. Note that |W f | ≤ 2|ξ| as |Cl(ξ)| is bounded by |ξ|.

What would be a good definition for the relations R0 and R1 on W f? In
general, this is where the filtration method needs some creative input. Now, if
the only requirement were that ξ were to be true somewhere in the resulting
model, there would be a whole family of definitions that work (in the sense
that they ensure (7.8) below). But the extra constraint, namely that the
resulting model should be a pseudo-square, imposes some extra restrictions.
Nevertheless, the following definition works:

Ris̄t̄ if for all �iϕ ∈ Cl(ξ): M, s � �iϕ iff M, s′ � �iϕ.
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(Observe that this is well defined, by the fact that ∼-equivalent points agree
about all formulas in Cl(ξ).) Finally, the definition of V f is rather obvious:

V f (p) = {s̄ ∈W f | s ∈ V (p)}.

Note that this is well defined for all proposition letters p occurring in ξ.
We can prove the main claim concerning filtration:

for all formulas ϕ ∈ Cl(ξ): M, s � ϕ iff Mf , s̄ � ϕ. (7.8)

This claim is proved by a formula induction. Leaving the straightforward
induction base and the boolean cases of the inductive step to the reader, we
concentrate on the case where ϕ is of the form �0ψ. (The case where ϕ is of
the form �1ψ is of course completely analogous.)

First, assume that M, s � �0ψ. Then, by definition, there is some s′ in
M such that s ≡0 s′ and M, s′ � ψ. By the inductive hypothesis, this gives
that Mf , s̄′ � ψ. It easily follows from the definitions that s ≡0 s′ implies
R0s̄s̄

′. But then it follows immediately that Mf , s̄ � �0ψ. For the other
direction, suppose that Mf , s̄ � �0ψ. Then, for some t̄ in Mf , we have
that R0s̄t̄ and Mf , t̄ � ψ. Hence, by the inductive hypothesis, we have that
M, t � ψ. But then, from reflexivity of ≡0, it follows that M, t � �0ψ, and
so from R0s̄t̄ we may infer, using only the definition of R0, that M, s � �0ψ.

This proves (7.8), so in order to prove the left-to-right direction of the
proposition we have only to show that Mf is a pseudo-square. We leave it to
the reader to verify that both R0 and R1 are equivalence relations. In order
to check the other condition, let s̄ and t̄ be points in Mf . Now the fact that
M is a square and that s and t are pairs comes in handy. Let z = (s0, t1).
Then s ≡0 z ≡1 t. But it then follows that R0s̄z̄ and R1z̄t̄, which shows that
the composition of R0 and R1 is indeed the universal relation on Mf . �

What can we conclude from the examples Tile, Tile−, and S52? Not
that looseness is a necessary condition for a modal system to be decidable:
witness Tile− and S52. On the other hand, it should be clear that dropping
the looseness principle leads us to the immediate vicinity of the danger zone:
adding only a grain of global expressive power will turn the highly decidable
logic Tile− into the undecidable Tile.

Concerning S52, it is very interesting to observe what happens if we move
to higher dimensions. For instance, there seem to be two three-dimensional
counterparts of S52, according to which relation between two triples one
takes to be the accessibility relation for �i:

s ≡i t if sj = tj for all j �= i,

s ∼i t if si = ti.

In the second, relatively loose, interpretation the resulting logic is decidable.
In the first interpretation, one obtains a class of rather tight models; the
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resulting logic is undecidable. Since it is this logic that corresponds to a
three-variable fragment of first-order logic (in a way similar to that discussed
above for S52), this makes an interesting case for the second locality principle.

7.4.2 Universal Access: K∗

We now consider the modal system K∗ obtained by expanding the basic
modal language with the modality 〈∗〉, keeping the class of models intact
and giving both � and 〈∗〉 the standard interpretation. Recall that the
meaning of 〈∗〉 was defined using the reflexive transitive closure R∗ of the
relation R.

Let us first see where K∗ stands with respect to the looseness and
locality principles. We have seen already that 〈∗〉 is invariant under bisim-
ulations, whence we have an analogue of Theorem 7.3.6: any K∗-satisfiable
formula is satisfiable in a tree model. K∗ also meets the second locality
principle, at least if we are allowed to include finite-variable fragments
of the infinitary language Lω1ω (an extension of first-order logic in which
countable conjunctions and disjunctions are allowed). For it is easy to see
that K∗-formulas have correspondents in the three-variable fragment of this
language: simply add the following clause for 〈∗〉 to the standard translation
of L�:

STx(〈∗〉ψ) = ∃y(R∗xy ∧ ST y(ϕ)), ST y(〈∗〉ψ) = ∃x(R∗yx ∧ STx(ϕ)).

Here we use the fact that the reflexive transitive closure can be expressed
using three variables only; for instance, R∗xy could stand for the following
abbreviation:

x = y ∨ Rxy ∨ ∃y′ (Rxy′ ∧Ry′y) ∨ ∃y′ (∃y (Rxy ∧Ryy′) ∧Ry′y) ∨ . . .

However, K∗ violates the first locality principle in the following way: if r is
the root of a tree model M, then we have

M, r � 〈∗〉ϕ↔M, s � ϕ for some s in M,

as the reader can easily check. In fact, unlike the basic modal system, K∗

does not have the finite tree model property; for instance, the following
satisfiable formula is not satisfiable on any finite tree:

[ ∗ ](p→ 〈∗〉¬p) ∧ [ ∗ ](¬p→ 〈∗〉p).

(It is satisfiable on the natural numbers with successor, with p interpreted as
the even numbers.)

Summarizing, the present system is loose, and it satisfies the second
but not the first locality principle. What about its decidability, or the finite
model property? In fact, both properties hold, as we shall see now. We first
prove that K∗ has the bounded model property.
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Proposition 7.4.4. Any satisfiable K∗ formula ξ is satisfiable on a model
of size 2O(|ξ|).

Proof. Suppose that ξ is satisfiable in some model M = (W,R, V ). We again
define a collection of relevant formulas. This time, we need a new closure rule:
we call a set X of formulas ∗-closed if it contains �〈∗〉ϕ whenever it contains
〈∗〉ϕ. Now let FL(ξ) be the smallest set of formulas containing ξ which is
∗-closed, besides being closed under taking subformulas and single negations.
It is not difficult to prove that the cardinality of FL(ξ) is linear in the
size of ξ.

The method that we use to construct a finite model for ξ is, just as in the
case of S52, that of filtration. We define the following relation on points of M:

s ∼ s′ ↔ for all ϕ in FL(ξ) : M, s � ϕ iff M, s′ � ϕ.

Again, it is obvious that ∼ is an equivalence relation, and again, our filtrated
model will be based on the collection W f of equivalence classes of this
relation; it is convenient to identify the equivalence class of s with the color
of s, which we define as the set c(s) = {ϕ ∈ FL(ξ) | M, s � ϕ}. Note that
|W f | ≤ 2O(|ξ|), as |FL(ξ)| is bounded by |ξ|.

To finish the definition of the filtrated model, we define the relation Rf

on colors as follows:

Rfcd↔ for all �ϕ ∈ FL(ξ): (ϕ ∈ d⇒ �ϕ ∈ c).

The valuation V f is then defined as V f (p) = {c ∈ W f | p ∈ c}.
The key claim of the filtration proof is the following.

Claim 1. For all formulas ϕ ∈ FL(ξ) and all colors c, ϕ ∈ c iff Mf � ϕ.

Proof of Claim The proof follows by an induction on the complexity of ϕ.
We treat only the case where ϕ is of the form 〈∗〉ψ.

First suppose that 〈∗〉ψ ∈ c. Assume that c is the color of s in M; that is,
M, s � 〈∗〉ψ. By definition, there is a sequence of states s1, . . . , sn in M such
that s = s1, Rsisi+1 for all i, and M, sn � ψ. By the definition of colors, it
follows that ψ ∈ c(sn). Also, it is easy to show that Rfc(si)c(si+1) for all i.
But then it follows immediately that Mf , c � 〈∗〉ψ.

For the other direction, suppose that Mf , c � 〈∗〉ψ. By the truth
definition of 〈∗〉, there must be colors c1, . . . , cn such that c = c1, Rfcici+1

for all i, and M, cn � ψ. It follows from the inductive hypothesis that ψ ∈ cn.
From this, and the observation that ϕ→ 〈∗〉ϕ is valid in any model, it follows
that 〈∗〉ψ ∈ cn.

We now show that

If Rfdd′, then 〈∗〉χ ∈ d′ implies 〈∗〉χ ∈ d. (7.9)

Suppose that Rfdd′ and 〈∗〉χ ∈ d′. It follows that 〈∗〉χ belongs to FL(ξ), and
so �〈∗〉χ is in FL(ξ) as well, by ∗-closure. But then, by the definition of Rf ,
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we find that �〈∗〉χ is in d. Since d is a color, there must be some w in W such
that d = c(w). By definition, we have that M, w � �〈∗〉χ. From this it is easy
to derive that M, w � 〈∗〉χ, and so again, by definition, we have 〈∗〉χ ∈ d.

But, from (7.9) and 〈∗〉ψ ∈ cn, an easy downward inductive proof shows
that 〈∗〉ψ ∈ ci for all i. In particular, we find that 〈∗〉ψ belongs to c1 = c.
This finishes the proof of the claim.

Thus ξ is satisfiable in a model of size 2O(|ξ|). �

The last proposition implies decidability, as it is decidable whether a
K∗ formula is satisfiable on a finite model. The idea of colors can also be
used directly in an algorithm which tries to construct a model like Mf . This
construction uses the same idea as the K-World algorithm given earlier: states
are identified with subsets of Cl(ξ). Let S0 consists of all sets Δ ⊆ Cl(ξ) for
which Prop-Max(Δ,Cl (ξ)) holds and which satisfy ϕ ∈ Δ ⇒ 〈∗〉ϕ ∈ Δ, for
all 〈∗〉ϕ ∈ Cl (ξ). (For the definition of Prop-Max(Δ,Cl (ξ)), see Sect. 7.3.)
Clearly S0 can be effectively computed and |S0| ≤ 2O(|ξ|). We now inductively
construct a sequence of collections of sets of formulas S0 � S1 � S2 � S3 · · · .
During this construction, just as in the K-World algorithm, we try to find
witnesses for diamond formulas. We say that a set Δ ∈ Si is ready if Si
contains witnesses for all diamond formulas in Δ:

• for every formula �ψ ∈ Δ there is a Δψ ∈ Si such that RfΔΔψ and
ψ ∈ Δψ, and

• for every formula 〈∗〉ψ ∈ Δ there are Δ1, Δ2, . . . , Δn ∈ Si such that
Δ = Δ1, RfΔiΔi+1 and ψ ∈ Δn,

If every set in Si is ready and Si contains a set Δ with ξ ∈ Δ, then the
algorithms returns “ξ is satisfiable”. If there is no set in Si containing ξ,
then the algorithms returns “ξ is not satisfiable”. Otherwise, let Si+1 consist
of all ready sets in Si, and we continue the construction. Since Si � Si+1,
the construction is guaranteed to terminate in at most 2O(|ξ|) stages. The
correctness of the algorithm can be shown along the lines of the proof of the
last proposition. Thus we have established the following.

Theorem 7.4.5. It is decidable whether a given K∗ formula is satisfiable.

7.4.3 Generalizing Looseness: the Until Operator

In this subsection, we consider the modal system given by the propositional
language expanded with the binary until operator U , the class of all models
of the form (W,R, V ), and an interpretation of U as given above (recalled
below). We have already mentioned that truth in this language is not
bisimulation-invariant, and we are thus not dealing with a modal system
in the narrow sense; in particular, we shall see that there are satisfiable U -
formulas that are not satisfiable in any tree. Nevertheless, we shall show that
this system does have some kind of loose model property, and we shall use this
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property for showing that it has a decidable satisfiability problem. In fact,
this “looseness property” is the reason why we take a look at this operator: it
shows in a relatively simple setting how to generalize the notions of looseness
and tree models. These generalizations are made in the section on guarded
fragments.

To start with, let LU be the language obtained by expanding the classical
propositional language with the binary connective U . Recall that M is the
class of all models of the form (W,R, V ). It is convenient to use the following
notation: for s and u elements of W ,

M, su � ψ iff M, t � ψ, for all t satisfying Rst and Rtu. (7.10)

This is because we can now rephrase the truth definition of the until operator
as follows:

M, s � U(ϕ, ψ) iff M, u � ϕ and M, su � ψ, for some u such that Rsu.
(7.11)

We call the resulting modal system (LU ,M,�) the until system. In order to
see why truth of LU -formulas is not invariant under bisimulations, consider
the formula U(p,0)∧¬U(p, p). (Here 0 abbreviates (p∨¬p).) This formula is
satisfiable and its smallest irreflexive model contains three points; see model
M1 in Figure 7.7. Note that in the unraveling M2 of the model M1, U(p, p)
holds at the root of the tree. This shows that LU is really a more expressive
language than L�. In fact, one can show that the formula U(p,0) → U(p, p)
holds throughout any tree model, whence U(p,0)∧¬U(p, p) is not satisfiable
in any tree model. This shows that the until system does not have the tree
model property.

Decidability

Unlike our earlier proofs, we shall not use any kind of finite model property
in order to prove decidability for the until system. This is not because the
system does not have the bounded finite model property (it does); our proof

� �

�

�

�

�

p pp

¬p ¬p

M1 M2

Fig. 7.7. Until formulas are not invariant under bisimulations
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method is for didactic purposes. The idea behind the mosaic method that
we employ is that instead of transforming a model into a finite model, we
could just as well “deconstruct” it into a finite “toolkit”, which we shall call
a linked set of mosaics. One then has to show that a formula is satisfiable if
and only if there exists such a linked set of mosaics for it.

What, then, are mosaics? One could best describe them as little pieces of
a model that, if linked together in a nice way, contain sufficient information
to reconstruct another model which looks sufficiently like the original one to
preserve the truth of LU -formulas. In this way we will establish a loose model
property for the until system: any satisfiable formula is satisfiable in a model
consisting of these isomorphic copies of mosaics that hang together only very
loosely. (Later on in the chapter, we shall come back to this issue in more
technical detail.)

Concerning the notion of a mosaic, the first question is what information
we are interested in. This question is easy to answer: as in the filtration proof
for S52, we are interested only in the truth of subformulas of ξ. The second
question then should be: which parts are we going to cut out of the model?
Here we need to define a new concept. We call a subset of the domain of a
model M = (W,R, V ) packed if every two distinct elements s and t of the
subset are R-related (that is, we require that Rst or Rts). Our patchwork
pieces will then be packed sets of size at most three.

The number three here derives from the fact that the truth definition
of U(ϕ, ψ) employs three variables. In fact, if one were to try to devise a
standard translation or a bisimulation game for the LU -language, the number
three would show up as the minimal number of variables needed and as the
minimal size of the windows that cover the models during the game. During
a game, one would see that these windows would be placed only on packed
sets of the models.

Abstracting from the origin of these pieces, we arrive at the following
definition. From now on, we let ξ be an arbitrary but fixed LU formula; ξ is
the formula whose satisfiability needs to be decided. We let Cl (ξ) denote the
set of subformulas of ξ.

Definition 7.4.6. A ξ-type mosaic is a quadruple μ = (X,R,Aϕ, Bϕ)ϕ∈Cl(ξ)

such that X is a set of size at most three; R and every Bϕ are binary relations
on X; and every Aϕ is a unary relation on X. When ξ is clear from the
context, we shall use simply the term “mosaic”.

The basic idea underlying this definition is that Aϕ holds of a point if we
“want” ϕ to be true at it, while Bϕ holds of a pair of points if we “want” ϕ
to be true at every point between them. Obviously, not every such structure
is part of a model — we need some further constraints for that. We call a
mosaic coherent if it satisfies the following conditions (phrased in first-order
logic and to be read universally):



400 7 Modal Logic and Decidability

(C0) Rxy ∨Ryx ∨ x = y,
(C1) A¬ϕx↔ ¬Aϕx,
(C2) Aϕ∧ψx↔ Aϕx ∧Aψx,
(C3) Bϕ∧ψxy ↔ Bϕxy ∧Bψxy,
(C4) (Rxy ∧Ryz ∧Bϕxz) → Aϕy,
(C5) (Rxy ∧Aϕy ∧Bψxy) → AU(ϕ,ψ)x.
A few words of explanation: C0 reflects the fact that we have taken only

packed subsets of the model as the domain of our mosaic mini-models. C1–C3
are selfexplanatory; note that there is no analog of C1 for the B-predicates,
since there is a hidden universal quantifier in the meaning of a predicate
Bϕ, see (7.10). Finally, C4 and C5 are rather obvious consequences of our
intuitive meaning of the A- and B-predicates and the truth definition of the
until operator.

The conditions C0–C5 take care of all universal constraints on the A- and
B-predicates; but of course there are existential demands as well, which we
shall call requirements. A requirement of a mosaic μ = (X,R,Aϕ, Bϕ)ϕ∈Cl(ξ)

is one of the two following types of object:
(a) (AU(ϕ,ψ), s) such that AU(ϕ,ψ)s,
(b) (not Bϕ, s, t) such that Rst and not Bϕst.
In order to explain the requirements of type (a), suppose that we want the
formula U(ϕ, ψ) to be true at a point s; if there is a point t in the mosaic
such that Rst, Aϕt, and Bψst, then the mosaic itself directly fulfills the
requirement. This will rarely be the case, however; the whole point of the
mosaic method is that requirements can be fulfilled by distinct mosaics as
well, as follows. A link between two mosaics μ and μ′ is simply a partial
isomorphism between the two structures. We say that a link f : μ ↪→ μ′ fulfills
the requirement (AU(ϕ,ψ), s) of μ if there is some t in μ′ with Rf(s)t, Aϕt,
and Bψf(s)t. Likewise, a link f : μ ↪→ μ′ fulfills the requirement (notBϕ, s, t)
if there is some u in μ′ with Rf(s)u, Ruf(t), and ¬Aϕu.

A collection L of mosaics is called a linked set of mosaics if every require-
ment of every mosaic μ ∈ L is fulfilled via some link f : μ ↪→ μ′ to some μ′ also
in L. It is a linked set of mosaics for ξ if it contains a mosaic with nonempty Aξ.

The main theorem concerning mosaics is the following. (In order to follow
the main line of the chapter, the reader could skip the details of the proof.)

Proposition 7.4.7. An LU -formula ξ is satisfiable if and only if there is a
linked set of mosaics for ξ.

Proof. The left-to-right direction of the proof is easy. Suppose that M =
(W,R, V ) is a model for ξ. Out of this model, we cut a linked set of mosaics
for ξ, as follows. Let X be the collection of triples  x = 〈x1, x2, x3〉 such that
Rx1x2, Rx2x3, and Rx1x3. Associate with any such triple a mosaic μ�x based
on the set {x1, x2, x3}, with R as in M and with every Aϕ and Bϕ defined as
given by the truth of ϕ inM. We leave it as an exercise for the reader to verify
that the collection of all these mosaics indeed forms a linked set of mosaics.
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The right-to-left direction of the proposition is the hard one, although the
key idea underlying its proof is quite intuitive. We construct a model for ξ
step by step; that is, we approximate our model via a series of finite structures
that we call networks. A network is a structure N = (W,R,Aϕ, Bϕ)ϕ∈Cl(ξ)

of the same type as a mosaic but not bounded in size. A network is called
coherent if it satisfies the conditions C1–C5 above. To ask for C0 would be
too much; instead, we require coherent networks to satisfy the following:

(liveness) every packed set X of size at most three comes from a mosaic; that
is, for each such set X ⊆ W there is a partial isomorphism f : N ↪→ μ
such that f is defined on X .

Liveness means that, through the mosaics, we are in control of certain small
parts of the model: the packed sets of size at most three. Why only these
sets? The truth definition of U provides the answer. The meaning of U(ϕ, ψ)
depends only on these small packed sets in the model.

A defect of a network is a requirement that is not directly fulfilled in
the network itself, and a network is called saturated if it has no defects. A
network is perfect if it both coherent and saturated.

This name is well chosen, since perfect networks are the ones
that we are after. The reason for this is that with every network
N = (W,R,Aϕ, Bϕ)ϕ∈Cl(ξ) we can associate a modal model in an obvious
way: it is defined as the structure N ◦ = (W,R, V ◦), where V ◦(p) = Ap for
all variables p occurring in ξ. But only for perfect networks can we prove the
following truth lemma.

Claim 1. If N is a perfect network, then for all formulas ϕ ∈ Cl (ξ) and all
points s, t in N :

1. s ∈ Aϕ iff M, s � ϕ.
2. If Rst, then (s, t) ∈ Bϕ iff M, st � ϕ.

Proof of Claim The proof of this claim is by induction on the complexity
of ϕ. We consider only the case where ϕ is of the form U(ψ, χ), and only
prove part 2 of the claim (the first part is simpler).

By the induction hypothesis and the truth definition of U , in order to
prove part 2 it suffices to show that for all pairs of points s and t such that
Rst, we have that (s, t) �∈ Bϕ iff u �∈ Aϕ for some u with Rsu and Rut. The
left-to-right direction immediately follows from the fact that N is perfect and
thus all requirements of type (b) are fulfilled. For the other direction, suppose
that s, t and u are points satisfying Rst, Rsu, Rtu and u �∈ Aϕ. Observe that
{s, t, u} is a packed set of size at most three, so that we may use the liveness
condition. This yields a partial isomorphism f from N to some mosaic μ
such that f is defined for each of s, t, and u. It follows that Rf(s)f(t),
Rf(s)f(u), Rf(t)f(u), and f(u) �∈ Aϕ; but then it follows from condition C4
that (f(s), f(t)) �∈ Bϕ. Returning to N , this shows that (s, t) �∈ Bϕ, which is
what we needed to prove. This finishes the proof of the claim.
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It follows from the above claim that in order to show that ξ is satisfiable,
it suffices to show that there is a perfect network for it, that is, a perfect
network such that Aξ is not empty.

Claim 2. There is a perfect network for ξ.

Proof of Claim The proof of this claim falls out into three parts. First we
show that there is some network for ξ (not necessarily perfect). This is easy,
since we are given a linked set of mosaics for ξ: as our network we simply
take any mosaic with a nonempty Aξ.

The second and main part of the proof consists in showing that any defect
of any network can be repaired; that is, we can find a bigger network in which
the defect no longer occurs. Without going into too much technical detail,
let us see how to repair a defect of type (b) (defects of type (a) are repaired
in a similar way).

Suppose that s and t are points of the network N such that Rst and not
Bϕst for some subformula ϕ of ξ, while there is no point u between s and
t such that ¬Aϕu. The idea now is simply to repair this defect by adding a
new point to the network. What kind of point? Well, since we have Rst we
know that s and t come from a mosaic; that is, there is a partial isomorphism
f from N to some mosaic μ. Obviously, (notBϕ, f(s), f(t)) is a requirement
of this mosaic. But since we are working with a linked set of mosaics, there
must be some link g between μ and μ′ and some u in μ′ such that Rg(f(s))u,
Rug(f(t)), and ¬Aϕu. Now we simply add an entirely new point r to the
network, and make sure that the relations between s, t, and r are such that
this part of the model is isomorphic to μ′. It is thus obvious that we have
repaired the defect, and that the new structure is a network. In order to keep
the liveness condition, it is essential not to relate r to any other point besides
s and t: in this way, the only new packed sets are {r, s, t} and its subsets.

Finally, these two parts provide the material and the tools for constructing
the desired perfect network for ξ. Starting from the mosaic for ξ (which
is of course a network), we repair defects, one by one, step by step, thus
constructing a sequence N0, N1, . . . of networks. Using some standard
combinatorics, we can ensure that the limit of the chain of networks is a
network without defects. In particular, if we always take new points from a
fixed set, say ω, we can enumerate the set of all (potential) defects of any
network in the chain; if at each step of the construction we repair the current
network’s defect with the lowest number in this enumeration, we can create
a perfect network. This finishes the proof of the claim.

�

Theorem 7.4.8. It is decidable whether a given LU -formula is satisfiable.

Proof. We can adjust the “elimination algorithm” given for the system K∗

in order to deal with mosaics. This is done as follows. Let S be the set of
all ξ-type mosaics (up to isomorphism). Let S0 ⊆ S be the subset containing
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all coherent mosaics. S0 can be computed effectively, since coherence can be
checked effectively. It is not hard to show that |S| ≤ 2O(|ξ|). We now induc-
tively construct a sequence of sets of mosaics S0 � S1 � S2 � S3 · · · , just as
in the proof for the system K∗. The idea is that we delete mosaics from Si
if they have a requirement which cannot be fulfilled inside Si. The details of
this construction will be spelled out in the section on guarded fragments. �

What is important to remember is that the until system has a kind of loose
model property: if a formula ξ is satisfiable then there is a linked set of mosaics
for it, and if there is such a set for ξ, then the proof of Proposition 7.4.7 shows
how to construct a loose model for ξ. We shall come back to this in Section 7.6

Notes

Tiling problems (or domino problems, as they are sometimes called) were
introduced by Wang [61] and have since been used in a variety of forms
to prove undecidability and complexity results. An accessible proof of the
undecidability of the N× N tiling problem, a result due to Berger [8], can be
found in the monograph by Börger, Grädel & Gurevich [10]. Our discussion
of the logic Tile was based on Spaan [55], where an example is presented in a
language that expands the basic modal language with the universal diamond.

The modal system S52 (S5 square) has a long history in the algebraic
disguise of the class of diagonal-free cylindric algebras of dimension two,
see the monograph [27]. The bounded finite model property of S52 was
first established by Segerberg [53]. The fact that every pseudo-square
bisimulates by a functional bisimulation with a square can be found in Marx
& Venema [43]. The higher-dimensional counterparts of S52 are studied as
modal logics in Venema [59, 60].

The modal system K∗ can best be seen as a fragment of propositional
dynamic logic (PDL) in which there is only one atomic program. For more
information on PDL, the reader is referred to the handbook article by
Harel [24]. The decidability of PDL was proved by Fischer & Ladner [18].
The elimination algorithm leading to Theorem 7.4.5 is due to Pratt [50].

The operators “Since” and “Until” were introduced by Hans Kamp
in order to prove expressive (in)completeness results for temporal logics
over classes of linear flows of time. Nowadays, they belong to the standard
repertoire of temporal logics in computer science; see [39]. A bisimulation
variant which characterizes this language over arbitrary models was found by
Kurtonina & de Rijke [36]; for some decidability results over classes of linear
flows of time, see Burgess & Gurevich [12]. Our Theorem 7.4.8 and its proof
are based on results and proofs related to the loosely guarded fragment that
are due to van Benthem.

The filtration method has been used extensively as a tool for proving
decidability results for modal logics, since Lemmon [38] and Segerberg [52]
further developed ideas dating back to McKinsey & Tarski [44]. The mosaic
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method for proving decidability of a logic was developed by Németi [45]; it has
since been used for a wide range of logics, often related to a multi-dimensional
modal setting. With hindsight, even Gödel’s proof of the decidability of the
satisfiability problem for ∀2∃∗ prenex sentences can be called a mosaic-style
proof as well; see the very clear exposition in [10].

7.5 Modal Complexity

In the previous sections, we have discussed the decidability of the satisfi-
ability problem for several modal systems, gathering various results along
the way. For instance, for the basic modal system K, we saw that every
satisfiable formula can be satisfied in an exponential-size tree model with
branches of polynomial depth; for S52, we could do no better than finding
an exponential-size quasi-model.

In this section, we take a closer look at such differences, examining how
they affect the complexity of the modal systems that we present. Our goal
is not to give precise reductions and matching algorithms — this is very
well documented in the literature. Rather, we shall paint with a broad
brush and try to convey once more our earlier message that looseness and
locality are key notions in understanding the decidability and complexity
of modal systems. To do this we discuss modal systems whose satisfiability
problems are complete for the complexity classes NP, PSPACE, EXPTIME,
and NEXPTIME, respectively. We believe that these systems, besides being
complete for these classes, indeed form very indicative examples.

Our agenda for the section is set out in Table 7.1. We assume that the
reader has at least a basic understanding of complexity classes such as NP,
PSPACE, EXPTIME, etc. Completeness and hardness are understood in this
chapter by means of polynomial-time many-one reductions. (The reader is
referred to [3] for basic definitions.) In this section, we concentrate on the sat-
isfiability problem — recall that C-completeness of the satisfiability problem
for a modal system implies co-C-completeness of the validity problem.

The layout of this section is summarized in Table 7.1. Every column represents
a modal system and the complexity class for which its satisfiability problem is
complete. The third row indicates whether satisfiable formulas can be satisfied
in tree models for that logic, and the fourth row whether the modal system

Table 7.1. Layout of Section 7.3

modal system/logic S5 Func K K∗ S52

complete for NP NP PSPACE EXPTIME NEXPTIME
tree model property * yes yes yes no
global expressive power yes no no yes yes
subsection 7.5.1 7.5.1 7.5.2 7.5.3 7.5.4
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is expressive enough to define the universal modality. We mention these two
properties because they correspond to the looseness and first locality principle,
respectively (as mentioned before, we shall meet the second locality principle
again in the last section). The star in the first column marks the special role
of the logic S5, which is the logic of the universal modality E by itself.

We shall often use the tractability result concerning model checking that
we mentioned earlier on when discussing the second locality principle. In this
section, we confine ourselves to modal languages with a finite number of first-
order definable modal operators. For modal formulas in such a language, the
model checking problem (i.e., given as input a (finite) model M, a state s and
a formula ξ, to determine whether M, s � ξ), is solvable in PTIMEin the size
of both the model and the formula. Also, for an elementary (i.e., definable by a
single first-order sentence) class of models K, the membership problem (given
as input a finite modelM, to determine whetherM belongs to K), is also solv-
able in PTIME. We shall call a modal system elementary if it has an elemen-
tary class of models and each of its operators has a first-order truth definition.

7.5.1 NP and the Polysize Model Property

The class NP of nondeterministic polynomial-time algorithms is the smallest
complexity class that we shall consider for the satisfiability problem for modal
systems. The reason for this is that every nontrivial modal logic contains
the collection of all valid propositional formulas; hence we can reduce the
NP-complete satisfiability problem for propositional logic to that of the
modal system. So NP is a nice class to work with since we only have to show
an upper bound. Unfortunately, there are not many modal systems with a
satisfiability problem in NP.

How can we show that the satisfiability problem is in NP for a given modal
system? The easiest route and the one that modal logicians most often take is
via the polysize model property. A modal system is said to have this property
if every satisfiable formula ξ is satisfiable in a model whose size is bounded by
p(|ξ|) for a fixed polynomial p. Using the two complexity results mentioned
above, namely, PTIME for both the model checking and the membership
problem, it is easy to show that for elementary modal systems, the polysize
model property implies NP-completeness of the satisfiability problem.

Let us see then, if we can find modal systems with this polysize model
property; we shall confine ourselves to the basic modal language. In Sect. 7.3,
we showed that every satisfiable formula ϕ can be satisfied in an at most
|ϕ|-ary tree of depth at most |ϕ|: a model whose size is exponential in |ϕ|.
Thus, if we want a polysize model, we should restrict either the width or the
depth of such trees. This is possible if we consider smaller classes of models.

Restricting the width is easy: we consider only models in which R is
a total function. The cut-off argument in Section 7.3 yields a linear-sized
model. Recall from Definition 7.3.8 that d�(ξ) denotes the modal depth of ξ.
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Proposition 7.5.1. Let Func be the modal system (L�,�,F) such that �
is the standard definition and F is the class of models in which R is a
total function. Let ξ be a formula in L�. If ξ is Func-satisfiable, then it is
Func-satisfiable in a model containing at most d�(ξ) + 1 states.

As a corollary, the satisfiability problem for Func is in NP.

An extremely simple way of bounding the depth is to make the accessibil-
ity relation total; a state at which ϕ holds is then a witness for �ϕ at every
state in the model.

Note, however, that making the accessibility relation total breaks with the
first locality principle! Nevertheless, the resulting modal system, which we
shall call S5 after the name of the logic associated with it, has a satisfiability
problem in NP.

Proposition 7.5.2. Let S5 be the modal system (L�,�,U) such that � is the
standard definition and U is the class of models in which R is the universal
relation. Let ξ be a formula in the basic modal language. If ξ is S5-satisfiable
then it is S5-satisfiable in a model containing at most |ξ| states.

As a corollary, the satisfiability problem for S5 is in NP.

Proof. Let M = (M,R, V ) be a model such that R = M ×M and M, s � ξ.
Choose, for every subformula �ϕ of ξ, a state t ∈ M such that ϕ holds at t
(if such a state exists). Let M′ be the submodel of M consisting of s plus the
selected states. By our pruning argument of Section 7.3, M′, s � ξ, because
R is the universal relation. �

This finishes our discussion of NP and the polysize model property. Modal
systems with this property are few and far between. In the next subsection,
we shall see that for the basic modal system we can get only an exponential
upper bound on the size of a model.

7.5.2 PSPACE and Polynomially Deep Paths

In Section 7.3 we showed that every satisfiable formula ξ in the basic modal
language is satisfiable in a finite tree model M, with depth and branching
degree both bounded by the length |ξ| of the formula. The good news about
this argument is that it can be used to show that satisfiability for K can be
decided in PSPACE. On the other hand, the upper bound that it establishes on
the size of M is no better than exponential — at this stage, the reader might
wonder whether this is an optimal bound. Here we show that it is — up to a
polynomial. In fact, the satisfiability problem of K is complete for PSPACE.

We now define, for each natural number n, a satisfiable formula ξ(n) with
the following two properties:

• the size of ξ(n) is quadratic in n; and
• when ξ(n) is satisfied in any modelM at state s, thenM contains as a sub-

structure an isomorphic copy of the binary tree of depth n whose root is s.
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Thus the size of the smallest model satisfying ξ(n) is exponential in |ξ(n)|. The
idea underlying the definition of ξ(n) is very simple: take n propositional vari-
ables p0, . . . , pn−1, and write a formula which, when satisfied, forces a binary-
branching tree in which every possible valuation on {p0, . . . , pn−1} occurs at
some leaf. Thus the model certainly contains 2n different states. The formula
is constructed using two “macros”: branch(pi) and store(pi) defined as follows:

branch(pi) := �(pi ∧ �pi) ∧�(¬pi ∧ �¬pi)
store(pi) := (pi → �pi) ∧ (¬pi → �¬pi).

The formula ξ(n) is then given by

branch(p0) ∧
∧

1≤i<n
�i(branch(pi) ∧

∧

0≤j<i
store(pj)), (7.12)

in which �i abbreviates a sequence of boxes, of length i. The formula works
as follows. Suppose M, s � ξ(n). Then the branch part of ξ(n) states that
every node t reachable in i R-steps from s has two different successors, one
forcing pi ∧ �pi and the other forcing ¬pi ∧ �¬pi. The store part of the
formula states that successors of t created by the branch part satisfy precisely
the same proposition letters p0, . . . , pi−1 as does t. We leave it to the reader
to verify that the interplay of the branch and store macros forces a binary
tree of depth n, as desired.

PSPACE lower bound. Of course, failure of the polysize model property
for the basic modal system does not in itself imply that its satisfiability
problem cannot be decided in NP. However, in fact the lower bound of
this problem is known to be PSPACE. This result can be obtained by an
interpretation of the validity problem of quantified boolean formulas. This
interpretation is based on the same two macros branch and store.

In a similar way, one can establish the existence of exponential-sized
models and a PSPACE lower bound for the modal system with 〈∗〉 as its only
modal operator (i.e., the fragment of K∗ of formulas in which the ordinary
diamond � does not occur). To overcome the difficulty that 〈∗〉 has direct
one-step access to all states in a tree one has to add additional propositional
variables to encode the depth of the tree. See the notes for details.

PSPACE upper bound. The K-World algorithm for the basic modal
system K (see Figure 7.6) runs in PSPACE. Recall that for any formula
ξ, ξ is K satisfiable iff there exists a set Δ ⊆ Cl(ξ) such that ξ ∈ Δ and
K-World(Δ,Cl(ξ)) is true. All sets encountered in the execution of K-World
are subsets of Cl (ξ). Each subset of Cl(ξ) can be represented in space O(|ξ|),
by using pointers to a copy of the formula. Therefore, at each level of the
recursion, O(|ξ|) space is used. After d�(ξ) recursive calls (d�(ξ) being the
modal depth of ξ), there are no more �ψ formulas in Σ and the recursion
stops. Thus the recursion depth is bounded by d�(ξ) ≤ |ξ|, and hence the
total amount of space required by the algorithm is O(|ξ|2). The existential
demands in the algorithm (there exists a set Δ with ξ ∈ Δ such that . . . ,
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and for all �ψ ∈ Δ, there exists . . . ) make the algorithm nondeterministic.
But PSPACE = NPSPACE by Savitch’s Theorem.

A crucial point in the PSPACE upper-bound argument is that we can
represent a complete branch of the tree model for ξ using only polynomial
space. Two factors are important here. First, only a polynomial number of
formulas is relevant for each world. And second, the depth of the branches is
bounded by the modal depth of the input formula. This is caused by the first
locality principle: a lack of global expressive power. In the next subsection we
show that adding such expressive power to the basic modal language destroys
this polynomial-depth property.

7.5.3 EXPTIME and Exponentially Deep Paths

Now we shall see that global expressive power in combination with another
diamond destroys the polynomially bounded deptLh of the satisfying tree
models for the basic modal system. In particular, we shall create a satisfiable
formula which, when satisfied, forces a branch in the model containing an
exponential number of colors. Thus the PSPACE algorithm sketched in the
previous subsection will not work anymore. In fact, the additional expressive
power will be enough to show that the satisfiability problem is EXPTIME-
hard. We again consider the system K∗ of Subsect. 7.4.2. We want to show
that its language is strong enough to force the existence of exponentially
deep R-paths. A simple way of doing so employs binary counters.

By a binary counter we mean a device that can have a natural number
as its value, represented as a binary string of 0s and 1s; it should also be
possible to increment this value by one. We use a set {p0, . . . , pn−1} of
propositional variables to implement an n-ary binary counter (“n-ary” means
that the counter is reset to zero after reaching the value 2n − 1). We use
these variables to encode the n bits of the counter, with p0 encoding the
least significant and pn−1 the most significant bit. The variable pi being
true in a given state, encodes the fact that the ith bit of the counter is 1 in
that state. The key idea of an encoding into the modal language lies in the
following characterization of adding 1 to a binary counter. If a = an−1 . . . a0

and b = bn−1 . . . b0 are two n-bit counters, then b = a + 1(mod 2n) precisely
when the following holds: either bi = 0 and ai = 1 for all i (this is when we
start counting at 0 again), or, for some k ≤ n− 1, we have

(1) ak = 0, and bk = 1,
(2) aj = 1 and bj = 0 for all j < k, and
(3) ai = bi for all i > k.

In a picture:
10110 0 1111 a
00000 0 0001
10110 1 0000 b = a + 1.

k
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We want to write a formula γ(n) which forces a counter to take all values
from 0 to 2n− 1, in consecutive states, thereby forcing an exponentially deep
path. We shall take care that the formula has a length of only O(n2). The
formula γ(n) is a conjunction of four formulas. The first conjunct expresses
the fact that the counter is initially set to 0:

¬p0 ∧ . . . ∧ ¬pn−1.

The other conjuncts of γ(n) must hold globally in a model. To achieve that
aim, we use the dual [ ∗ ] of 〈∗〉 ([ ∗ ]ϕ abbreviates ¬〈∗〉¬ϕ). It is clear that
the root s of a tree model has M, s � [ ∗ ]ϕ if and only if, for all t, M, t � ϕ.

The second conjunct expresses that every state has a successor:

[ ∗ ]�0.

The next two conjuncts take care of addition. They express that whenever
an R-transition is made in the model, the binary counter is increased by one.
First, we deal with the simple case of resetting the counter:

[ ∗ ]((p0 ∧ . . . ∧ pn−1) → �(¬p0 ∧ . . . ∧ ¬pn−1)).

Finally, the last conjunct of γ(n) covers the case when we have to “carry
one”. This conjunct is itself a conjunction, having a conjunct of the following
form for every k such that 0 ≤ k < n:

[ ∗ ]((¬pk ∧
∧

j<k

pj) → �(pk ∧
∧

j<k

¬pj) ∧
∧

i>k

store(pi)),

where store(pi) is defined in the previous subsection and the empty
conjunction is set to true.

We leave it to the reader to check the correctness of this formula. Note
that the sole use of [ ∗ ] was to make statements in the basic modal language
true everywhere in the model. This use is crucial, however: Proposition 7.3.10
states that a formula in the basic modal language can only force models with
R-paths of at most its modal depth. Now the modal depth of γ(n) is just
two (one for [ ∗ ], and one for �), for every n, while the minimal R-depth of
models satisfying γ(n) is 2n.

Complexity bounds. In the previous subsection, we saw that the polynomi-
ally bounded depth of models was the key to a PSPACE upper bound. The
present result does not yet show that such an upper bound is not possible,
but it renders it unlikely (see the notes). And, indeed, the satisfiability
problem for K∗ is EXPTIME-complete. For the lower bound we refer to the
notes. The upper bound follows from the K∗ decision algorithm presented
in the previous section. Recall that the algorithm tried to construct a set of
ready subsets of Cl(ξ). We remarked that the construction would terminate
after 2O(|ξ|) stages. Computing which sets in Si are ready can be done in
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time polynomial in the size of Si, which is at most exponential in |ξ|. Thus
the whole construction can be carried out in deterministic exponential time.

We note that all results carry over to the modal system K+E (the basic
modal system expanded with the universal modality E). In particular, the
formula γ(n) with ¬〈∗〉¬ substituted by ¬E¬ causes an exponentially deep
path. This result will be used in the next section.

7.5.4 NEXPTIME

We now consider a modal system in which matters get even worse: the system
S52. For the definitions of S52 and its square and pseudo-square models, see
Section 7.4.1.

This system does not have the tree model property. In addition, the
language has global expressive power: for every ϕ, if a model M satisfies
�1�0ϕ, then M � ϕ. So we expect that the satisfiability problem will have
a high complexity. This is indeed the case. This system is strong enough to
interpret the system K + E of the previous subsection, inheriting its EXP-
TIME lower bound. But S52 lacks the tree-like models of K + E on which the
EXPTIME upper bound is based. We shall sketch an argument that S52 is
strong enough to force exponential grids, which is the key to a NEXPTIME
lower-bound result. A matching upper bound follows from earlier results:
every satisfiable formula ξ is satisfiable in a pseudo-square of size at most
2|ξ|, by Proposition 7.4.3. Being a pseudo-square is a first-order property. As
we saw in the subsection on NP, testing whether a modal formula is satisfied
in a model takes time polynomial in the formula and the size of the model.
Thus for the same reasons as why the polysize model property leads to an
NP upper bound, we obtain here a NEXPTIME upper bound.

We start with the interpretation of the K + E satisfiability problem. For
this purpose, we use a translation reminiscent of the two-variable version of
the standard translation (read r as Rxy, �1 as ∃y, and �0 as ∃x, and read
w as the assertion expressing that x = y). Let (·)t be a translation function
which maps propositional variables to propositional variables, commutes with
the booleans, and translates the diamonds as follows:

(�ϕ)t = �1(r ∧�0(w ∧ ϕt))
(Eϕ)t = �1�0(w ∧ ϕt),

where r and w are fixed variables not occurring in the input language. Their
function becomes clear in the proof of the next proposition.

Proposition 7.5.3. Let ξ be a formula in the basic modal language expanded
with the universal modality. Then ξ is K + E-satisfiable if and only if w ∧ ξt

is S52-satisfiable.

Proof. (⇒) LetM = (W,R, V ) be a Kripke model and letM, s � ξ. We define
a square S52-model M∗ = (W ×W,≡0,≡1, V

∗), with V ∗ defined as follows:
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V ∗(w) = {(x, x) | x ∈ W}
V ∗(r) = R
V ∗(p) = {(x, x) | x ∈ V (p)}.

An easy induction shows that M∗, (s, s) � w ∧ ξt.
(⇐) LetM = (W,≡0,≡1, V ) be a square S52 model andM, (s, t) � w∧ξt.

Define a Kripke model M◦ whose domain consists of all pairs in W where
w holds; of which the valuation V ◦ is simply the restriction of V to these
w-pairs; and in which the accessibility relation R◦ holds between (x, y) and
(x′, y′) iff M, (x, y′) � r. A simple induction shows that for all w-pairs (x, y)
and for all formulas ϕ, we have that M, (x, y) � ϕt ↔M◦, (x, y) � ϕ. �

This result immediately shows that the S52 satisfiability problem is
EXPTIME-hard. In fact, it is even hard for NEXPTIME. This lower bound
can be shown by a reduction to a tiling problem very similar to the one
used to show undecidability in Section 7.4. In this case we tile not the grid
N × N but the finite grid 2n × 2n. It is known that this problem is complete
for nondeterministic time exponential in n. Here we provide the key idea
underlying the reduction, which is that for every n, we can define a satisfiable
formula ξ(n) with the properties that

• the length of ξ(n) is quadratic in n, and
• if ξ(n) is satisfied in an S52 model M, then M contains as a substructure

an isomorphic copy of the structure (2n × 2n, Sv, Sh), where Sv, Sh are
the vertical and horizontal successor functions in the grid 2n × 2n.

Once we have expressed this, it is straightforward to find a formula saying
that a tiling exists, just as in Section 7.4. Because of space limitations we can
give only a very rough sketch. The first conjunct of ξ(n) is the translation of
the formula γ(2n) of the previous subsection. We assume that γ(2n) is created
from variables x0, . . . , xn−1 and y0, . . . , yn−1. So there are two binary counters,
that together specify in binary notation a pair 〈k, l〉 in the grid 2n × 2n.

Let M be a Kripke model such that M, s � γ(2n). Let M∗ be the square
S52 model as defined in the proof of Proposition 7.5.3. In M∗ we have,
besides the tree structure of the Kripke model, also all “grid points”: that is,
for all worlds w,w′ ∈W , the pair (w,w′) exists in the model M∗. We can use
these pairs to relate the counter information in w and w′. More concretely, we
write formulas ensuring that at (w,w′), a propositional variable Sv holds if
and only if w encodes the grid pair 〈k, l〉 and w′ encodes its vertical successor
〈k, l + 1〉. We again use the characterization of adding one in binary in order
to create a formula of the required small size. For the full proof, we refer to
the notes.

We have seen in Proposition7.5.3 how the EXPTIME modal logic K + E
“lives” inside the NEXPTIME logic S52. Also, we saw that the “extra”
points available in the grid models lead to higher complexity. In the next
section, we shall do the same but with more variables. We look at first-order
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logic and find decidable fragments living inside it. In analogy with the last
result, we can say that the key feature of these fragments is that they cannot
speak about the “extra grid points”.

7.5.5 Notes

Most complexity-theoretic classifications of modal satisfiability and validity
problems come from the computer science literature. This work can be
roughly divided into three groups: temporal logics describing computations,
logics for reasoning about knowledge, and description logics. Pointers to this
vast literature can be found in the handbook articles by Stirling [56] and
Calvanese et alii [13] for temporal logics and description logics, respectively,
and in the monograph by Fagin et alii [17] for epistemic logics. Here we
provide only the sources for the results in this section.

The NP-completeness of S5 was proved by Ladner [37]. The results on
PSPACE come also from [37]: both the upper and the lower bound for
the basic modal system K are established there. Ladner’s procedure for K
is like the one given in Figure 7.6, save that he uses “concrete tableaux”
(that is, his algorithm specifies how to construct the required atoms) rather
than “abstract tableaux” (which factor out the required boolean reasoning).
Concrete tableaux were also used by Halpern and Moses [23] to construct
PSPACE algorithms for multimodal versions of K, S4, and indeed S5; as
these authors show, logics containing two S5 modalities are PSPACE-hard.

The EXPTIME-hardness of K∗ and K + E is due to Fischer & Lad-
ner [18] (who work in the richer setting of propositional dynamic logic). An
EXPTIME procedure for PDL using an “elimination algorithm” was given
by Pratt [50]. We used this idea in the proof of Theorem 7.4.5, and shall do
so again in the next section on the guarded fragment. For other applications
of the method, see for instance [23], where Halpern & Moses apply it to a
multimodal logic equipped with a common knowledge operator.

The modal system Func+E is an example of a modal system in which
exponentially deep paths can be forced but which is still decidable in
PSPACE, a result due to Sistla & Clarke [54]. We stress that adding the
universal modality causes the complexity to go up from NP. Note that in
this system there are no models which can be considered to be binary trees.
Indeed, Spaan [55] has provided a sufficient condition for EXPTIME-hardness
of the satisfiability problem of modal systems. This criterion requires the
existence of models which can be considered as finite binary trees, and an
expansion of the basic modal language which is powerful enough to make
statements which hold everywhere in such a tree model.

The fact that the square tiling problem with a width given in binary is
hard for nondeterministic exponential time was established by Fürer [19].
The lower bound for S52 was established by Marx [40].
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7.6 Modal Logic and First-Order Logic

The previous sections were centered around the question of what determines
the decidability and complexity of the satisfiability problem for various
modal systems. We identified the looseness property of modal logics as the
main principle guiding their nice computational properties; we also met two
locality principles that influence the complexity of a modal system. It now
seems natural to try and see how far we can push these ideas concerning
looseness and locality to larger fragments of first-order logic than the modal
fragment formed by the range of the standard translation map. The aim of
this section is to identify a number of decidable fragments of first-order logic;
that is, sets of first-order formulas for which it is decidable whether a given
formula in the subset is satisfiable in some first-order model or not.

Convention. We work in a relational first-order language with equality.
Thus the language contains neither constants nor function symbols. For a
sequence of variables x = x1, . . . , xn, we shall frequently write ∃xϕ, which, as
usual, has the same meaning as ∃x1 · · · ∃xnϕ. However, we view ∃x not as an
abbreviation but as a primitive operator. In particular, this means that the
subformulas of ∃xϕ are just ∃xϕ itself, together with the subformulas of ϕ.
By writing ϕ(x) we indicate that the free variables of ϕ are among x1, . . . , xn.

7.6.1 Guarded Fragments

In order to find larger “loose” fragments of first-order logic, we reconsider
the game-theoretic characterization of the modal fragment of first-order
logic. Recall that bisimulations can be defined using a certain two-pebble
Ehrenfeucht-Fräıssé game in which the universal player’s moves are restricted
in a certain way. We shall analyze these restrictions and implement them in
the standard Ehrenfeucht-Fräıssé games for first-order logic; then we shall
be ready to push all modal decidability arguments through for these guarded
fragments.

Consider once again the bisimulation game from Section 7.3, and the two
crucial properties:

Locality The game is played by moving a window of fixed size (two, in this
case) across the models.

Looseness The window can only be placed on parts of the model in which all
different points are related by the accessibility relation.

How do we generalize this to first-order logic? We implement the locality
principle by considering fragments of first-order logic using a fixed finite
number of variables. The looseness principle can be generalized in (at least)
two different ways, leading to different fragments of first-order logic. To state
these generalizations, we need two notions, both of which are well known in
finite model theory.
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Definition 7.6.1. Let M = (D, I) be a model for some first-order language.
A tuple (a1, . . . , an) of objects in D is called live in M if either a1 = · · · = an
or (a1, . . . , an) ∈ I(P ) for some predicate symbol P .

A subset A of D is called guarded if there is some live tuple (a1, . . . , an)
such that A ⊆ {a1, . . . , an}. In particular, singleton sets are always guarded;
note also that guarded sets are always finite. A is packed or pairwise guarded
if it is finite and each of its two-element subsets is guarded.

These notions can help us to incorporate the looseness principle into
Ehrenfeucht-Fräıssé games as follows: player ∀ can only move pebbles in such
a way that all configurations of pebbles that ever occur on the board are
placed on guarded or packed sets.

Definition 7.6.2. Let M = (D, I) and M′ = (D′, I ′) be two models. A
partial isomorphism between M and M′ is a bijection f : A → A′ between
some subsets A of D and A′ of D′ such that, for all predicate symbols P and
all tuples a in A (of the appropriate length), we have that a ∈ I(P ) if and
only if f(a) ∈ I ′(P ).

Now, for a partial isomorphism f : A0 → A′
0 between M′ and M′,

we define the guarded game Gg(M,M′, f) as a variant of the familiar
Ehrenfeucht-Fräıssé game. Here, in each round of the game, ∀ selects a struc-
ture and a guarded set within that structure; ∃ responds with a guarded set
in the other structure. A match of the game thus gives rise to two sequences
A = A0, A1, . . . and A′ = A′

0, A
′
0, . . . of subsets of D and D′, respectively. ∃

wins this match if there are local isomorphisms fn : An → A′
n (n ∈ ω) such

that f0 = f and, for each n, fn and fn+1 agree on the intersection An ∩An+1

while their inverses agree on A′
n ∩A′

n+1.
Now let a in M and a′ in M′ be (possibly empty) sequences of elements

such that f(ai) = a′i for all i. When ∃ has a winning strategy in the guarded
game Gg(M,M′, f) we say that a and a′ are g-bisimilar.

The packed game Gp(M,M′, f) and the notion of packed bisimilarity are
defined in the same way but using packed sets instead of guarded ones.

These restrictions on the moves of player ∀ have direct syntactical coun-
terparts in the form of restrictions on quantification: the idea is that we only
allow quantification in the form ∃xϕ, where ϕ has to meet certain criteria.

Definition 7.6.3. We say that a formula ϕ packs a set of variables
{x1, . . . , xk} if ϕ is a conjunction of formulas of the form xi = xj or
R(xi1 , . . . , xin) or ∃yR(xi1 , . . . , xin) such that for every xi �= xj , there is a
conjunct in ϕ in which xi and xj both occur free.

The packed fragment PF is defined as the smallest set of first-order
formulas which contains all atomic formulas and is closed under the boolean
connectives and under packed quantification. That is, whenever ψ is a packed
formula, π packs Free(π), and Free(ψ) ⊆ Free(π), then ∃x(π ∧ ψ) is packed
as well; π is called the guard of this formula. The guarded fragment GF is
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the subfragment of PF in which we allow only guarded quantification; that
is, packed quantification in which the guard π is an atomic formula.

PFn and GFn denote the restrictions to n variables and at most n-ary
predicate symbols of PF and GF, respectively.

When we want to be specific about the free variables occurring in the
formulas, we shall often write ∃y (π(x, y) ∧ ψ(x, y)) for the quantified packed
formulas, tacitly assuming that x and y do not share any variables.

Typical examples of guarded (and thus also packed) sentences are
∀xy(Rxy → Ryx), ∃xy (Rxy ∧ Ryx ∧ (Rxx ∨ Ryy)), and the standard
translation of a formula in the basic modal language (with R functioning as
guard). A typical nonexample is ∀xyz((Rxy ∧ Ryz) → Rxz): it is neither
guarded nor packed. For an example of a packed formula which is not
guarded, consider ∃xyz((Rxy ∧Rxz ∧Ryz) ∧ ¬Cxyz).

Note that the notion of packedness only places meaningful restrictions on
pairs of distinct variables: since the formula x = x packs the set of variables
{x}, the formula ∃x(x = x∧ ψ(x)), (i.e., with a single quantification over the
variable x) is a packed formula, at least, provided that ψ(x) is packed. When
ψ(x) is guarded, then ∃x(x = x ∧ ψ(x)) is also guarded. Since this formula
is equivalent to ∃xψ(x), this shows that packedness allows a fairly mild form
of ordinary quantification, namely over formulas with one free variable. A
nice corollary of this is that we may perform the standard translation of the
universal modality E within the two-variable guarded fragment:

STx(Eϕ) = ST y(Eϕ) = ∃x(ST x(ϕ)) ≡ ∃x(x = x ∧ STx(ϕ)).

A similar translation to first-order logic can be defined for the language with
the until modality U . Its range is the packed fragment with three variables.
The interesting clause here is

STx(U(ϕ, ψ)) = ∃y(Rxy ∧ ST y(ϕ) ∧ ∀z((Rxz ∧Rzy)→ ST z(ψ))).

This formula is not packed itself, because in the subformula
∀z ((Rxz ∧ Rzy) → ST z(ψ))) the guard Rxz ∧ Rzy does not pack its
own free variables {x, y, z}. But, of course, the formula is equivalent to

∃y (Rxy ∧ ST y(ϕ) ∧ ∀z ((Rxz ∧Rzy ∧Rxy) → ST z(ψ)))

which is packed. It is not hard to convert this example into a proof showing
that every formula in the Until language is equivalent to a packed formula.
The (adjusted) translation is another example of a packed sentence that is
not guarded.

We have defined first-order fragments by incorporating restrictions on the
moves in an Ehrenfeucht-Fräıssé game into the syntax. It is obvious that
packed formulas are preserved when player ∃ has a winning strategy. But,
in fact, the fragments precisely characterize the formulas which are invariant
under the corresponding games.
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Definition 7.6.4. A first-order formula ϕ(x) is invariant under guarded
(packed) bisimulation if, for all g-bisimilar (p-bisimilar, respectively) tuples
a in M and a′ in M′ we have that M |= ϕ[a] iff M′ |= ϕ[a′].

Theorem 7.6.5. Let ξ be a first-order formula. The following are then
equivalent:
(i) ξ is equivalent to a formula in the packed (guarded) fragment.
(ii) ξ is invariant under packed (guarded) bisimulations.

This theorem can be relativized in the usual way to n-variable fragments
and the corresponding n-pebble games. This is the first analogue of a modal
theorem (the Characterization Theorem 7.3.4). In the section on basic modal
logic we saw that this theorem allowed us to prove that every satisfiable
formula was satisfiable in a tree. These trees were obtained by unraveling or
unwinding the model. Analogous notions of unraveling and tree models can
be defined for the guarded and packed fragments as well; here, we confine
ourselves to the notion of a loose model.

Definition 7.6.6. Let M = (D, I) be a first-order structure. We call M a
loose model of degree k ∈ N if there is some acyclic connected undirected
graph G = (G,E) and a function f mapping nodes of G to subsets of D of size
not exceeding k such that for every live tuple s̄ from M, the set L(s) = {k ∈
G | si ∈ f(k) for all si}, is a nonempty and connected subset of G.

In words, we call a model M = (D, I) loose if we can associate a connected
graph G = (G,E) with it in the following way. Each node t of the graph
corresponds to a small subset f(t) of the model; a good way of thinking about
this is that t “describes” f(t). We then require that the graph “covers” the
entire model in the sense that any a ∈ D belongs to one of these sets (this
follows from the fact that for any a ∈ D, the “tuple” a is live). The fact that
each set L(a) is connected whenever a is live implies that different nodes of
the graph will not give contradictory descriptions of the model. Finally, the
looseness of the model stems intuitively from the acyclicity of G and the con-
nectedness of the sets L(a), because this ensures that when we walk through
the graph we may describe different parts of the model, but we never have
to worry about returning to the same part once we have left it. Summarizing,
we may see the graph as a loose, coherent collection of descriptions of local
submodels of the model. The loose models are the ones for which we can find
such a graph. Note that the degree of a loose model corresponds directly to
the second locality principle that we identified at the end of Sect. 7.3.

Now we can announce our second modally flavored theorem: it establishes
the loose model property for the packed fragment.

Theorem 7.6.7. Every satisfiable packed formula ξ can be satisfied on a
loose model of degree not exceeding the number of variables occurring in ξ.

And, as we shall see later on, this property indeed plays a crucial role in
the proof of the following result.
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Theorem 7.6.8. It is decidable whether a packed formula is satisfiable. In
fact, the satisfiability problems for both the guarded and the packed fragment
are complete for 2EXPTIME.

The doubly exponential lower bound may raise doubts concerning the
relevance of this result. Fortunately, there are some large and very natural
fragments for which better bounds may be obtained, and here the second
notion of “locality” comes into play. This is because not only does the concept
of looseness generalize to these fragments, but we can also give analogous
versions for the notion of locality. Recall that we introduced this concept
when we saw that the basic modal language could be translated into the
two-variable fragment of first-order logic. This suggests that we might try
to improve on Theorem 7.6.8 by considering finite-variable fragments of PF
and GF . And, indeed, it turns out that “bringing locality into the language”
brings down the complexity by one exponent!

In the case of the guarded fragment, we can formulate this result in a nice
way, by imposing conditions on the first-order signature rather than on the
number of variables used. Recall that the signature of the modal fragment
of first-order logic consists of unary relation symbols and one binary symbol.
In general, we call a first-order signature L n-bounded if all relation symbols
in L have arity at most n. It is not very difficult to see that every guarded
sentence in an n-bounded signature can be rewritten using only n variables.
Thus, just as in the basic modal case, the signature determines the number
of variables. Note that this property is lost for the full packed fragment, as
we can pack arbitrarily large sets with binary relations.

In any case, by implementing both looseness and locality in first-order
logic we may obtain the following result.

Theorem 7.6.9. Fix a natural number n.
(i) The satisfiability problem for formulas in the packed fragment PFn is

decidable in EXPTIME.
(ii) Hence, the satisfiability problem for sentences in the guarded fragment

in the n-bounded signature is decidable in EXPTIME.

Note that for n ≥ 2 the satisfiability problem for the guarded fragment
GFn is also EXPTIME-hard. This holds by the interpretation of the modal
system K + E using the standard translation. However, by also implementing
the first locality principle (namely no global expressive power) it is even
possible to bring the complexity down to PSPACE, see the notes.

Finally, what about finite models? Several subfragments of the packed
fragment, including the guarded fragment, are known to have the finite model
property. For the full packed fragment, this was an open problem at the time
of writing this chapter, but recently, a positive solution to this problem has
been obtained. For reasons of space limitations, we cannot go into detail
here — see the notes for references.
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7.6.2 Decidability and Complexity

This subsection provides the proofs of all the results mentioned above. The
main idea behind the proofs is given by the mosaic method that we met in
the decidability proof for the until system. Roughly speaking, this method
is based on the idea of deconstructing models into a (modulo isomorphism)
finite collection of finite submodels and, conversely, of building up new,
“nice”, models from such parts.

This subsection is structured as follows. We start with a formal definition
of the notion of mosaics and some related concepts. We then state the main
result concerning the mosaic method, namely the Mosaic Theorem, stating
that a packed formula has a model if and only if there is a bounded set of
bounded-size mosaics for it. This enables us to define our decision algorithms
and establish their complexity. We then continue by proving the Mosaic
Theorem. In doing so, we obtain as a by-product the loose model property
for the packed fragment.

Linked Sets of Mosaics

Mosaics form the key tools in our proof; for a formal definition we need
some syntactic preliminaries. Given a first-order formula ξ, we let Var(ξ)
and Free(ξ) denote the sets of variables and free variables, respectively,
occurring in ξ. Let V be a set of variables. A V -substitution is any
partial map σ : V → V . The result of performing a substitution σ
on the formula ψ is denoted by ψσ. (We can and may assume that if
Var(ψ) ⊆ V , then Var(ψσ) ⊆ V . For instance, when substituting y for x
in Rxz ∧ ∀y (Rzy → Qxy), we have to rename the bound variable y, as in
Ryz ∧ ∀u (Rzu → Qyu). The point is that we do not need to use a fresh
variable u for this: instead, we may reuse x, giving Ryz ∧ ∀x (Rzx→ Qyx).)

As before, we shall employ a notion of closure to delineate a finite set of rel-
evant formulas, i.e., formulas that for some reason critically influence the truth
of a given formula ξ. Also, recall that the single negation ∼ϕ of a formula ϕ
denotes the formula ψ if ϕ is of the form ¬ψ; otherwise, ∼ϕ is the formula ¬ϕ.

Definition 7.6.10. Let Σ be a set of packed formulas in the set V of
variables. We call Σ V -closed if Σ is closed under subformulas, single
negations, and V -substitutions (that is, if ψ belongs to Σ, then so does ψσ

for every V -substitution σ). By Clg(ξ), we denote the smallest Var(ξ)-closed
set of formulas containing ξ.

For the remainder of this section, we fix a packed formula ξ — all
definitions to come should be understood as being relativized to ξ. The
number of variables occurring in ξ (free or bound) is denoted by k; that
is, k is the size of Var(ξ). It can easily be verified that the sets of guarded
and packed formulas are both closed under taking subformulas; hence, the
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set Clg(ξ) consists of guarded (packed, respectively) formulas. An easy
calculation shows that the cardinality of Clg(ξ) is bounded by kk · (2|ξ|) (kk

is the number of Var(ξ)-substitutions).
The following notion is the counterpart of the maximally propositionally

consistent sets that we have met in earlier decidability proofs. The defining
conditions again derive from a desire to prove a truth lemma.

Definition 7.6.11. Let X ⊆ Var(ξ) be a set of variables. An X-type is a set
Γ ⊆ Clg(ξ) with free variables in X satisfying, for all formulas ϕ ∧ ψ, ∼ϕ,
and ϕ in Clg(ξ) with free variables in X, the following conditions:

(T1) ϕ ∧ ψ ∈ Γ iff ϕ ∈ Γ and ψ ∈ Γ ;
(T2) ϕ �∈ Γ iff ∼ϕ ∈ Γ ;
(T3) ϕ, xi = xj ∈ Γ only if ϕσ ∈ Γ (for any substitution σ mapping xi to

xj and/or xj to xi, while leaving all other variables fixed); and
(T4) if ψ(x, z) and π(x, z) are in Γ , then so is ∃y (π(x, y) ∧ ψ(x, y))

(provided that the latter formula belongs to Clg(ξ)).

The next definition introduces our key tool for proving the decidability
of the packed fragment: mosaics and linked sets of mosaics. Basically, a
mosaic consists of a set X of variables in Var(ξ) and a set Γ encoding the
relevant information about some small part of a model. Here “small” means
that its size is bounded by the number of objects that can be named using
variables in X , and “relevant” refers to all formulas in Clg(ξ) whose free
variables are in X . It turns out that a finite set of such mosaics contains
sufficient information to construct a model for ξ, provided that the set links
the mosaics together in a nice way. Here is a more formal definition.

Definition 7.6.12. A mosaic is a pair (X,Γ ) such that X ⊆ Var(ξ) and
Γ ⊆ Cl g(ξ). A mosaic (X,Γ ) is coherent if Γ is an X-type.

A link between two mosaics (X,Γ ) and (X ′, Γ ′) is a renaming (that is, an
injective substitution) σ with dom(σ) ⊆ X and ran(σ) ⊆ X ′ which satisfies,
for all formulas ϕ ∈ Clg(ξ), ϕ ∈ Γ iff ϕσ ∈ Γ ′.

A requirement of a mosaic is a formula of the form ϕ(x) =
∃y (π(x, y)∧ψ(x, y)) belonging to Γ . A mosaic (X ′, Γ ′) fulfills the requirement
∃y (π(x, y)∧ ψ(x, y)) of a mosaic (X,Γ ) via the link σ, if, for some variables
u, v in X ′, we have that σ(x) = u and that π(u, v) and ψ(u, v) belong to Γ ′.
A set S of mosaics is linked if every requirement of every mosaic in S is
fulfilled via some link to some mosaic in S. S is a linked set of mosaics for
ξ if it is linked and ξ ∈ Γ for some (X,Γ ) in S.

Note that a mosaic (X,Γ ) may fulfill its own requirements, either via the
identity map or via some other map from X to X .

The key result concerning mosaics is the following Mosaic Theorem.

Theorem 7.6.13 (Mosaic Theorem). Let ξ be a packed formula. Then ξ
is satisfiable if and only if there is a linked set of mosaics for ξ.
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Proof. The hard, right-to-left, direction of the theorem is proved in
Lemma 7.6.14 below; here we prove only the other direction.

Suppose that ξ is satisfied in the model M = (D, I). In a straightforward
way we can “cut out” from M a linked set of mosaics for ξ. Consider the set
of partial assignments of elements in D to variables in Var(ξ). For each such
α, let (Xα, Γα) be the mosaic given by Xα = dom(α) and

Γα = {ϕ ∈ Clg(ξ) | M |= ϕ[α]}.

We leave it to the reader to verify that this collection forms a linked set of
mosaics for ξ. �

In establishing the hard direction of this proposition, we shall in fact
prove something stronger: starting from a linked set of mosaics for a formula
ξ we shall show that there is a loose or tree-like model for ξ.

First, however, we want to show that the Mosaic Theorem is the key
for proving the decidability of the packed fragment, and also for finding an
upper bound for its complexity.

The Decision Algorithm and Its Complexity

The Mosaic Theorem tells us that any packed formula ξ is satisfiable if and
only if there is a linked set of mosaics for ξ. Thus in order to decide whether
ξ is satisfiable, it suffices to give an algorithm which decides the existence
of a linked set of mosaics for ξ. We shall establish the upper complexity
bound for the satisfiability problem of packed formulas by implementing
such an algorithm. The following observations are easy consequences of our
definitions; recall that k denotes the number of variables occurring in ξ.

• We have already observed that the cardinality of Cl g(ξ) is bounded by
kk · 2|ξ|.

• The number of mosaics does not exceed 2k · 22|ξ|·kk ; using the big O

notation, this gives at most 2O(|ξ|)·kk mosaics.
• given sets X,Γ with X ⊆ Var(ξ) and Γ ⊆ Clg(ξ), it is decidable in time

2O(|ξ|)·kk whether (X,Γ ) is a coherent mosaic.

Our algorithm is very similar to the one we used for the until system in
Subsect. 7.4.3. Let S0 be the set of all coherent mosaics. By the observations
above, S0 contains fewer than 2O(|ξ|)·kk elements and can be constructed in
time 2O(|ξ|)·kk . We now inductively construct a sequence of sets of mosaics
S0 � S1 � S2 � S3 · · · , as follows. We call a mosaic μ in a set Si Si-ready if
each of its requirements is fulfilled in (some mosaic of) Si. Note that one can
determine the Si-readiness of a mosaic (X,Γ ) by checking, for each require-
ment ϕ(x) ∈ Γ , whether there is a link σ to some mosaic (X ′, Γ ′) ∈ Si which
fulfills the requirement. If every mosaic μ in Si is Si-ready, then return “YES”
if Si contains a mosaic (X,Γ ) with ξ ∈ Γ , and “NO” if Si contains no such
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mosaic. If, on the other hand, there are mosaics in Si that are not Si-ready,
then we let Si+1 consist of the Si-ready mosaics and continue the algorithm.

Clearly the algorithm is correct; and since Si � Si+1, the construction
must halt after at most |S0| many stages. So let us now see about the
complexity. At each stage i, the algorithm determines the Si-ready mosaics;
we claim that this can be done in time exponential in kk ·O(|ξ|).

To check whether a given link between two given mosaics fulfills some given
requirement is a task that takes time linear in the size of each mosaic, and so
time quadratic in kk · 2|ξ|. In order to find out whether a given mosaic (X,Γ )
in a set Si is Si-ready, the algorithm has to check, for every requirement ϕ(x)
of the mosaic, for every link σ, and for every mosaic (X ′, Γ ′) in Si, whether
σ is a link between the mosaics fulfilling the requirement. Clearly, then, for a
given mosaic, this takes time at most kk ·2|ξ| (for the number of requirements)
times kk (for the number of links) times |Si| (for the number of mosaics)
times (kk · 2|ξ|)2 (for the checking time). Note that Si is the only number in
this product that is exponential in kk ·O(|ξ|). Hence, in order to compute all
the Si-ready mosaics, the algorithm needs time exponential in O(|ξ|) · kk.

As the size of S0 is bounded by 2O(|ξ|)·kk , the whole computation can
be performed in time exponential in O(|ξ|) · kk. Hence, if we consider a
formula ξ in a packed fragment with a fixed number of variables, |S0| is singly
exponential in |ξ|. In general, however, the number of variables k occurring
in a formula depends on the formula’s length and hence, in general, |S0| is
doubly exponential in |ξ|. Thus, pending the proof of the next lemma, this
shows the upper complexity bounds given in Theorems 7.6.8 and 7.6.9.

Step-by-Step Construction and Loose Models

We now show the hard direction of the Mosaic Theorem and establish, as a
by-product, the “loose model property” of Theorem 7.6.7.

Lemma 7.6.14. Let ξ be a packed formula. If there is a linked set of mosaics
for ξ, then ξ is satisfiable in a loose model of degree |Var(ξ)|.

Proof. Assume that S is a linked set of mosaics for ξ. Using a step-by-step
construction, we shall build a model for ξ, together with a graph G and
a function f mapping nodes of G to subsets of the domain of the model.
At each stage of the construction, we shall be dealing with some kind of
approximation of the final model and graph; these approximations will be
called networks and are fairly complex structures.

A network is a quintuple (M,G, μ, α, σ) such that M = (D, I) is a model
for the first-order language; G = (G,E) is a connected, adirected, and acyclic
graph; μ : G→ S is a map associating a mosaic μt = (Xt, Γt) in S with each
node t of the graph; and α is a map associating a map αt : Xt → D with each
node t of the graph. (This map is thus a partial assignment of the variables
occurring in ξ.) And, finally, σ is a map associating with each edge (t, t′) of
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the graph a link σtt′ from μt to μt′ (we shall usually simplify our notation by
writing σ instead of σtt′ ).

The idea is that each mosaic μt is supposed to give a complete description
of the relevant requirements that we impose on a small part of the model-to-
be. Which part? This is given by the assignment αt. And the word “relevant”
refers to the fact that we are interested only in the formulas influencing the
truth of ξ; that is, the formulas in Clg(ξ). The links between neighboring
mosaics are there to ensure that distinct mosaics agree on the part of the
model that they both have access to.

Now, obviously, if we want all of this to work properly we have to impose
some conditions on the networks. In order to formulate these, we need some
auxiliary notation. For a subset A ⊆ D, let L(A) denote the set of nodes in
G that have “access” to A; formally, we define L(A) = {t ∈ G | A ⊆ ran(αt)}.
For a tuple a = (a1, . . . , an) of elements in D we set L(a) = L({a1, . . . , an}).
Now a network is called coherent if it satisfies the following conditions (all to
be read as universally quantified):

(C1) Px ∈ Γt iff M |= Px[αt];
(C2) xi = xj ∈ Γt iff αt(xi) = αt(xj);
(C3) L(A) is nonempty for every guarded set A ⊆ D;
(C4) L(A) is connected for every guarded set A ⊆ D;
(C5) if Ett′, then σtt′(x) = x′ iff αt(x) = αt′(x′).
A few words of explanation about these conditions: (C1) and (C2) ensure

that every mosaic is a complete description of the atomic formulas that
hold in the part of the model it refers to. Condition (C3) states that no
guarded set in the model remains unseen from the graph, and the conditions
(C4) and (C5) are the crucial ones that ensure that remote parts of the
graph cannot contain contradictory information about the model — how this
works precisely will become clear later on. Note that condition (C5) has two
directions: the left-to-right direction states that neighboring mosaics have
common access to part of the model, while the other direction makes them
agree on their requirements concerning this common part.

The motivation for using these networks is that in the end we want any
formula ϕ(x) ∈ Clg(ξ) to hold in M under the assignment αt if and only
if ϕ(x) belongs to Γt. Coherence on its own is not sufficient to make this
happen. A defect of a network consists of a formula ∃y (π(x, y) ∧ ψ(x, y))
which is a requirement of the mosaic μt for some node t while there is no
neighboring node t′ such that μt′ fulfills ∃y (π(x, y) ∧ ψ(x, y)) via the link
σtt′ . A coherent network N is perfect if it has no defects. We say that N is
a network for ξ if for some t ∈ G, μt = (Xt, Γt) is such that ξ ∈ Γt.

Claim 1. If N = (M,G, μ, α, σ) is a perfect network, then
(i) M is a loose model of degree |Var(ξ)|, and
(ii) for all formulas ϕ(x) ∈ Clg(ξ) and all nodes t of G,

ϕ ∈ Γt iff M |= ϕ[αt].
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Proof of Claim For part (i) of the claim, letN = (M,G, μ, α, σ) be the per-
fect network for ξ. Let M = (D, I). As the function f mapping nodes of G to
subsets of D, we simply take the map that assigns the range of αt to the node t.
Since the domain of each map αt is always a subset of Var(ξ), it follows imme-
diately that f(t) will always be a set of size at most |Var(ξ)|. Now take an arbi-
trary live tuple s in M; it follows from (C3) and (C4) that L(s) is a nonempty
and connected part of the graph G. ThusM is a loose model of degree |Var(ξ)|.

We prove part (ii) of the claim by induction on the complexity of ϕ. For
atomic formulas, the claim follows by conditions (C1) and (C2), and the
boolean case of the induction step is straightforward (since Γt is an X-type)
and is left to the reader. We concentrate on the case where ϕ(x) is of the
form ∃y (π(x, y) ∧ ψ(x, y)).

First, assume that ϕ(x) ∈ Γt. Since N is perfect there is a node t′ in G and
variables u, v in Xt′ such that Ett′, π(u, v), and ψ(u, v) belong to Γt′ , while the
link σ from μt to μt′ maps x to u. By the induction hypothesis, we find that

M |= π(u, v) ∧ ψ(u, v)[αt′ ]. (7.13)

But, from condition (C5), it follows that αt′(x) = αt(u); hence (7.13) implies
that

M |= ∃y (π(x, y) ∧ ψ(x, y))[αt],

which is what we were after.
Now suppose, in order to prove the converse direction, thatM |= ϕ(x)[αt].

Let a denote αt(x); there are then b in D such that M |= π(x, y)[ab] and
M |= ψ(x, y)[ab]. Our first aims are to prove that

L(ab) �= ∅ (7.14)

and
L(A) is connected for every A ⊆ {a, b}. (7.15)

Note that if we are working in the guarded fragment, then π(x, y) is
an atomic formula, and hence it follows from M |= π(x, y)[ab] that ab is
live. Thus {a, b} is guarded, and hence (7.14) follows directly by condition
(C3). In fact, every A ⊆ {a, b} is guarded in this case, and so (7.15) follows
immediately by condition (C4).

In the more general case of the packed fragment we have to work a little
harder. First, observe that it does follow from M |= π(x, y)[ab] and the
conditions on π(x, y) in the definition of packed quantification that {c, d}
is guarded, and thus L(c, d) �= ∅, for every pair (c, d) of points taken from
ab. It follows from (C4) that {L(c, d) | c, d taken from ab} is a collection of
nonempty, connected, pairwise overlapping subgraphs of the acyclic graph
G. It is fairly straightforward to prove, for instance by induction on the size
of the graph G, that any such collection must have a nonempty intersection.
From this, (7.14) and (7.15) follow almost immediately.
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We thus may assume the existence of a node t′ in G such that
{a, b} ⊆ ranαt′ . Let u and v in Xt′ be the variables such that αt′(u) = a and
αt′(v) = b. The induction hypothesis implies that π(u, v) and ψ(u, v) belong
to Γt′ , and hence ϕ(u) ∈ Γt′ by the coherence of μt′ . Since both t and t′

belong to L(a), it follows from (7.15) that there is a path from t to t′ within
L(a), say t′ = s0Es1E . . . Esn = t. Let σi be the link between the mosaics of
si and si+1, and define ρ to be the composition of these maps. It follows by
an easy inductive argument on the length of the path that ρ is a link between
μt′ and μt such that ρ(u) = x. Hence, by the definition of a link, we have
that ϕ(x) ∈ Γt′ . This finishes the proof of the claim.

By Claim 1, in order to prove the lemma it suffices to construct a perfect
network for ξ. This construction uses a step-by-step argument; to start the
construction, we need some coherent network for ξ.

Claim 2. There is a coherent network for ξ.

Proof of Claim By our assumption about ξ, there is a coherent mosaic
μ = (X,Γ ) such that ξ ∈ Γ . Without loss of generality we may assume that
X is the set {x1, . . . , xn} (otherwise, we can take an isomorphic copy of μ in
which X does have this form). Let a1, . . . , an be a list of objects such that,
for all i and j, we have that ai = aj if and only if the formula xi = xj belongs
to Γ . Define D = {a1, . . . , an}, and put the tuple (ai1 , . . . , aik) in the inter-
pretation I(P ) of the k-ary predicate symbol P precisely if Pxi1 . . . xin ∈ Γ .
Let M be the resulting model (D, I), and define G as the trivial graph with
one node 0 and no edges. Let μ(0) be the mosaic μ; let α0 : X → D be given
by α(xi) = ai; and, finally, let σ00 be the identity map from X to X .

We leave it for the reader to verify that the quintuple (M,G, μ, α, σ) is a
coherent network for ξ. This finishes the proof of the claim.

The crucial step of this construction is to show that any defect of a
coherent network can be repaired.

Claim 3. For any coherent network N = (M,G, μ, α, σ) and any defect of
N there is a coherent network N+ that extends N and lacks this defect.

Proof of Claim Suppose that ϕ(x) is a defect of N because it is a
requirement of the mosaic μt and not fulfilled by any neighboring mosaic μt′ .
We shall define an extension N+ of N in which this defect is repaired.

Since S is a linked set of mosaics and μt belongs to S, μt is linked to a
mosaic (X ′, Γ ′) ∈ S in which the requirement is fulfilled via some link ρ. Let
Y be the set of variables in X ′ that do not belong to the range of ρ; suppose
that Y = {y1, . . . , yk} (with all yi being distinct). For the sake of a smooth
presentation, assume that Γ ′ contains the formulas ¬x′ = y for all variables
x′ ∈ X ′ and y ∈ Y (this is not without loss of generality — we leave the
general case as an exercise for the reader). Take a set {c1, . . . , ck} of fresh
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objects (that is, no ci is an element of the domain D of M), and let γ be the
assignment with domain X ′ defined as follows:

γ(x′) =
{
αt(x) if x′ = ρ(x),
ci if x′ = yi.

Let t′ be an object not belonging to G. Now define the network
N+ = (M+,G+, μ+, α+, σ+) as follows:

D+ = D ∪ {c1, . . . , ck},
I+(P ) = I(P ) ∪ {d | for some x, d = γ(x) and Px ∈ Γ ′},

G+ = G ∪ {t′},
E+ = E ∪ {(t, t′)},

and μ+, α+ and σ+ are given by the obvious extensions of μ, α, and σ,
namely by putting μ+

t′ = (X ′, Γ ′), α+
t′ = γ, and σtt′ = ρ.

Since the interpretation I+ agrees with I on “old” tuples, it is a straight-
forward exercise to verify that the new network N+ satisfies the conditions
(C1 - C3) and (C5).

In order to check that condition (C4) holds, take some guarded subset A
from D+; we shall show that L+(A) is a connected subgraph of G+. It is rather
easy to see that L+(A) is identical to either L(A) or L(A)∪{t′}; hence by the
connectedness of L(A), it suffices to prove, on the assumption that t′ ∈ L+(A)
and L(A) �= ∅, that t ∈ L(A). Hence, suppose that t′ ∈ L+(A); that is, each
a ∈ A is in the range of γ. But if L(A) �= ∅, each such point a must be old;
hence, by the definition of γ, each a ∈ A must belong to ran(αt). This gives
the result that t ∈ L(A), as required. This finishes the proof of the claim.

As in the proof for the until system, the previous two claims show that by
using some standard combinatorics we can construct a chain of networks such
that their limit is a perfect network. This finishes the proof of the lemma. �

7.6.3 Notes

The roots of the decidability proof in this section date back to 1986, when
Németi [45] showed that the equational theory of the class Crs of relativized
cylindric set algebras is decidable. The first-order counterpart of this result
is that a certain subfragment of the guarded fragment is decidable.

The importance of this result for first-order logic was realized in 1994
when Andréka, van Benthem & Németi introduced the guarded fragment and
showed that many nice properties of the basic modal system K generalize to it.
In particular, these authors established a characterization in terms of guarded
bisimulations, decidability, and a kind of tree model property. The journal ver-
sion of their paper is [2]. Some time later, van Benthem [7] generalized some of
the results, introducing the loosely guarded fragment. The slightly more gen-
eral packed fragment was introduced by Marx [41] in order to give a semantic
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characterization in terms of packed bisimulations (Theorem 7.6.5). (An exam-
ple of a packed sentence which is not equivalent to a loosely guarded sentence
in the same signature is ∃xyz(∃wCxyw ∧ ∃wCxzw ∧ ∃wCzyw ∧ ¬Cxyz).)

The mosaic-based decision algorithms used by Andréka, van Benthem &
Németi were essentially optimal, a result established by Grädel [21]. In that
paper, Grädel also defind and established the loose model property for the
loosely guarded fragment. Our definition of a loose model is based on the
definition of a tree model given there. Grädel & Walukiewicz [22] showed that
the same bounds obtain when the guarded fragment is expanded with least
and greatest fixed-point operators. Marx, Schlobach & Mikulas [42] defined
a PSPACE complete guarded fragment with the finite tree model property.
This fragment satisfies both locality principles.

The finite model property for the guarded fragment and several sub-
fragments of the packed fragment was established in an algebraic setting
by Andréka, Hodkinson & Németi [1]. Grädel [21] provided a direct proof
for the guarded fragment. After we finished the writing of this chapter,
Hodkinson [32] proved the finite model property of the full packed fragment.
All these results are based on variants of a result due to Herwig [29]. The use
of Herwig’s Theorem to establish the finite model property and to eliminate
the need of step-by-step constructions originates with Hirsch et alii [30].
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45. I. Németi. Free Algebras and Decidability in Algebraic Logic. DSc. thesis,
Mathematical Institute of the Hungararian Academy of Sciences, Budapest,
1986 (in Hungarian; English version in [46]).
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